
Inertially Stabilized Platforms for

SATCOM On-The-Move Applications:

A Hybrid Open/Closed-Loop Antenna Pointing

Strategy
by

Eric Allen Marsh
B.S. Mechanical Engineering

United States Air Force Academy, 2006
Submitted to the Department of Aeronautics and Astronautics

in partial fulfillment of the requirements for the degree of
Master of Science in Aeronautics and Astronautics

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2008
c© Massachusetts Institute of Technology 2008. All rights reserved.

Author .
Department of Aeronautics and Astronautics

June 6, 2008

Certified by. .
Dr. Dan Asta

Group Leader, MIT Lincoln Laboratory
Thesis Supervisor

Certified by. .
Dr. Timothy Gallagher

Technical Staff, MIT Lincoln Laboratory
Thesis Supervisor

Certified by. .
Prof. Jonathan P. How

Professor of Aeronautics & Astronautics
Thesis Supervisor

Accepted by .
Prof. David L. Darmofal

Associate Department Head, Chair, Committee on Graduate Students

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
02 JUN 2008

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Inertially Stabilized Platforms for SATCOM On-The-Move Applications:
A Hybrid Open/Closed-Loop Antenna Pointing Strategy

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Massachusetts Institute of Technology

8. PERFORMING ORGANIZATION
REPORT NUMBER
CI08-0015

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
The Department of the Air Force AFIT/ENEL, Bldg 16 2275 D Street
WPAFB, OH 45433

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

216

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2

Inertially Stabilized Platforms for

SATCOM On-The-Move Applications:

A Hybrid Open/Closed-Loop Antenna Pointing Strategy

by

Eric Allen Marsh

Submitted to the Department of Aeronautics and Astronautics
on June 6, 2008, in partial fulfillment of the

requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract

The increasing need for timely information in any environment has led to the development of mobile
SATCOM terminals. SATCOM terminals seeking to achieve high data-rate communications require
inertial antenna pointing to within fractions of a degree. The base motion of the antenna platform
complicates the pointing problem and must be accounted for in mobile SATCOM applications. An-
tenna Positioner Systems (APSs) provide Inertially Stabilized Platforms (ISPs) for accurate antenna
pointing and may operate in either an open or closed-loop fashion. Closed-loop antenna pointing
strategies provide greater inertial pointing accuracies but typically come at the expense of more
complex and costly systems. This thesis defines a nominal two-axis APS used on an EHF SAT-
COM terminal on a 707 aircraft. The nominal APS seeks to accomplish mobile SATCOM using
the simplest possible system; therefore, the system incorporates no hardware specific to closed-loop
pointing. This thesis demonstrates that the nominal APS may achieve accurate antenna pointing
for an airborne SATCOM application using a hybrid open/closed-loop pointing strategy.

The nominal APS implements the hybrid pointing strategy by employing an open-loop pedestal
feedback controller in conjunction with a step-tracking procedure. The open-loop feedback controller
is developed using optimal control techniques, and the pointing performance of the controller with
the nominal APS is determined through simulation. This thesis develops closed-loop step-tracking
algorithms to compensate for open-loop pointing errors. The pointing performance of several step-
tracking algorithms is examined in both spatial pull-in and tracking simulations in order to determine
the feasibility of employing hybrid pointing strategies on mobile SATCOM terminals.

Keywords: Mobile SATCOM, Antenna Pointing, Inertially Stabilized Platform, Two-axis Po-
sitioner, Linear Quadratic Gaussian Control, Nonlinear Optimization

Thesis Supervisor: Dr. Dan Asta
Title: Group Leader, MIT Lincoln Laboratory

Thesis Supervisor: Dr. Timothy Gallagher
Title: Technical Staff, MIT Lincoln Laboratory

Thesis Supervisor: Prof. Jonathan P. How
Title: Professor of Aeronautics & Astronautics

3

4

Acknowledgments

First off, I would like to thank Timothy Gallagher for his continued support, guid-

ance, and encouragement in this research. I would also like to thank Dan Asta and

Jonathon How for their contributions and support. A very special thanks is extended

to John Kuconis for my sponsorship at MIT Lincoln Laboratory. The help I received

from Mike Boulet and Anthony Hotz proved invaluable to this research, and their

willingness to answer countless questions has been much appreciated. I would like

to thank the following Lincoln Laboratory employees who have contributed in some

way to this thesis or have at least given me a smile in the hallways: Kevin Kelly,

Ed Bucher, Ross Conrad, Mark Deluca, Rajesh Viswanathan, Nagabushan Sivanan-

jaiah, Mike Gridley, Ted O’Connell, Saunak Shah, John Sultana, John Choi, Misha

Ivanov, Steve Targonski, David Savilonis, Dave Genovese, Peggy Speranza, and Rosa

Figueroa. This list is by no means complete, and I would like to express my deepest

gratitude toward all those who have made my tenure at MIT and Lincoln Laboratory

most enjoyable. Last, but not least, I want to extend a warm thank you to my family

and friends. Without you, none of this matters.

Disclaimer

The views expressed in this article are those of the author and do not reflect the

official policy or position of the United States Air Force, Department of Defense, or

the United States Government.

5

6

Contents

List of Figures 10

List of Tables 14

1 Introduction 17

1.1 Motivation for Work . 17

1.2 Problem Statement . 19

1.3 Contributions . 20

1.4 Thesis Overview . 21

2 Background and System Architecture 23

2.1 APS Hardware Configurations . 24

2.1.1 APS Components . 24

2.1.2 Antenna Payloads . 24

2.1.3 Pedestals and Sensors . 29

2.1.4 APS Design Requirements . 32

2.2 Control Strategies . 33

2.2.1 Open-loop Pointing and Sources of Error 34

2.2.2 Closed-Loop Antenna Pointing Methods 35

2.3 Nominal APS System Architecture 38

3 Open-Loop Controller Development 41

3.1 Equations of Motion . 42

3.1.1 Response Side . 42

7

3.1.2 Moment Side . 43

3.1.3 Base Motion Disturbance Modeling 46

3.1.4 Linear Plant Model . 49

3.2 Controller Development and Simulation 51

3.2.1 Linear-Quadratic Regulation Theory 52

3.2.2 Linear-Quadratic Estimation Theory 54

3.2.3 Linear-Quadratic Gaussian Theory 56

3.2.4 Reference Commands . 56

3.2.5 Development of the LQG Pedestal Controller in

MATLAB . 57

3.2.6 Controlled Nonlinear Plant Simulation 63

3.3 Pointing Error Distributions . 73

4 Closed-Loop Pointing Strategy 79

4.1 Defining the Cost Function . 80

4.2 Facets of the Optimization Problem 83

4.3 Step-tracking Using Function Comparison Methods 84

4.3.1 Full-field Search . 84

4.3.2 Spiral Search . 85

4.4 Step-tracking Using Optimization Techniques 88

4.4.1 Modified Newton’s Method . 90

4.4.2 Quasi-Newton’s Methods . 93

4.4.3 Method of Steepest Descent 94

4.4.4 Step-tracking Algorithm Architecture 95

4.5 Spatial Pull-in Simulations . 103

4.5.1 Observations . 111

4.6 Spatial Pull-in Robustness Tests . 113

4.6.1 Observations . 114

4.7 A Look at Tracking . 116

4.7.1 Observations . 118

8

4.8 Simulation Processing Times . 118

5 Conclusions 121

5.1 Open-loop Controller Simulation Results Summary 121

5.2 Closed-loop Step-tracking Simulation Results Summary 122

5.3 Overall Contributions . 124

5.4 Suggestions for Future Work . 125

A Satellite Look Angle Calculations 127

A.1 Satellite Targeting Using Classical Orbital Element Sets 128

A.2 Targetting Using Known Inertial Look Angles 132

A.3 Keplar2RRR.m . 134

A.4 basemotionlatlongalt2ECINAVDATA.m 136

B Open-Loop Controller Simulations 139

B.1 controller.m . 139

B.2 APS Simulink Model . 143

C Step-tracking Simulations 149

C.1 spiralsearch.m . 149

C.2 modifiedNewton.m . 154

C.3 BFGS.m . 166

C.4 DFP.m . 180

C.5 steepestdescent.m . 194

C.6 getsignalpower.m (Subroutine) . 205

D List of Acronyms and Symbols 207

9

10

List of Figures

1-1 Photo examples of ISP Systems . 18

2-1 APS Interconnect Block Diagram . 24

2-2 Antenna Gain Pattern (24 in. dish) 26

2-3 Gain Pattern as a Function of Two Orthogonal Angles (24 in. dish) . 26

2-4 HPBW as a Function of Antenna Size and Operating Frequency . . . 27

2-5 Gimbal Structures . 30

2-6 Two-axis Az/El positioner used in the “EHF SATCOM on the 707”

project . 30

2-7 Gyroscope (IMU) Accuracy Mapped to Applications 33

2-8 Monopulse Antenna System . 36

3-1 Pedestal Coordinates . 43

3-2 Aircraft Coordinate Frame . 47

3-3 Disturbance Rate Input Power Spectral Density (Antenna Body z Axis) 48

3-4 Actual and Estimated Pitch Component of Antenna Inertial Pointing

Error (Linear Plant) . 61

3-5 Actual and Estimated Pitch Component of Antenna Inertial Velocity

(Linear Plant) . 61

3-6 Actual and Estimated Base Motion Disturbance Input to the Antenna

Pitch Axis (Linear Plant) . 62

3-7 Applied Motor Torque: Elevation Motor (Linear Plant) 62

3-8 Closed-Loop Frequency Response: Elevation Motor Controller (Linear

Plant) . 63

11

3-9 Yaw Component of Antenna Pointing Error at Different Elevations

(Unmodified Controller) . 64

3-10 Yaw Component of Antenna Pointing Error as Elevation Changes:

Modified and Unmodified Controllers 65

3-11 Actual and Estimated Pitch Component of Antenna Inertial Pointing

Error (Simulink Simulation) . 67

3-12 Actual and Estimated Yaw Component of Antenna Inertial Pointing

Error (Simulink Simulation) . 67

3-13 Actual and Estimated Pitch Component of Antenna Inertial Velocity

(Simulink Simulation) . 68

3-14 Actual and Estimated Yaw Component of Antenna Inertial Velocity

(Simulink Simulation) . 68

3-15 Actual and Estimated Base Motion Disturbance Input to the Antenna

Pitch Axis (Simulink Simulation) . 69

3-16 Actual and Estimated Base Motion Disturbance Input to the Antenna

Yaw Axis (Simulink Simulation) . 69

3-17 Antenna Pitch Axis Inertial Angular Displacement Step Response (Simulink

Simulation) . 70

3-18 Antenna Yaw Axis Inertial Angular Displacement Step Response (Simulink

Simulation) . 70

3-19 Antenna Yaw Axis Commanded and Applied Torques for a Step Response 71

3-20 Pitch (q) and Yaw (r) Components of Antenna Pointing Error 74

3-21 q Auto-correlation Function . 74

3-22 r Auto-correlation Function . 75

3-23 q Histogram . 75

3-24 r Histogram . 76

4-1 X-El, El Coordinates with respect to Dish for Stationary, Level An-

tenna Base . 81

4-2 Antenna Gain Pattern Cost Function 81

12

4-3 Full-Field Search Example . 86

4-4 Spiral Search Pattern . 86

4-5 Cost Function as a Function of xeli (eli = 0◦) 87

4-6 Cost Function Finite Differencing Map 98

4-7 Strategy for Bracketing Minimum Along Descent Direction 102

4-8 Starting Coordinates for Spatial Pull-in Simulation 104

4-9 Magnitude of Satellite Inertial Angular Velocity 106

4-10 Number of Cost Function Evaluations per Trial Point vs. Spatial Pull-

in Convergence Time . 112

4-11 Starting Coordinates for Tracking Simulations 117

4-12 BFGS0.7 Spatial Pull-in Simulation Times vs. Number of Cost Function

Evaluations per Trial Point (n) for Serial and Parallel Processing . . . 119

A-1 Earth-Centered Inertial (ECI) Coordinate System 129

B-1 Nominal APS Pedestal Feedback Controller Simulink Model 143

B-2 Estimator Dynamics Subsystem . 144

B-3 Aircraft Rate Disturbance Input and Measured Aircraft Position Sub-

system . 145

B-4 Antenna Roll Dynamics Subsystem 146

B-5 Linear Torque-Speed Curve Subsystem 147

B-6 KVH Gyro Sensor Subsystem . 148

B-7 IMU Sensor Subsystem . 148

13

14

List of Tables

3.1 Kolmogorov-Smirnoff Test for Pitch Error Component 76

4.1 Average Number of Trial Points Visited for Deterministic Gain Pattern

Cost Function . 108

4.2 Algorithm Comparison for Deterministic Cost Function 108

4.3 Average Number of Trial Points Visited when the Number of Cost

Function Evaluations per Trial Point (n) equals 1 108

4.4 Algorithm Comparison when the Number of Cost Function Evaluations

per Trial Point (n) equals 1 . 109

4.5 Average Number of Trial Points Visited when the Number of Cost

Function Evaluations per Trial Point (n) equals 5 109

4.6 Algorithm Comparison when the Number of Cost Function Evaluations

per Trial Point (n) equals 5 . 109

4.7 Average Number of Trial Points Visited when the Number of Cost

Function Evaluations per Trial Point (n) equals 10 109

4.8 Algorithm Comparison when the Number of Cost Function Evaluations

per Trial Point (n) equals 10 . 109

4.9 Average Number of Trial Points Visited when the Number of Cost

Function Evaluations per Trial Point (n) equals 15 110

4.10 Algorithm Comparison when the Number of Cost Function Evaluations

per Trial Point (n) equals 15 . 110

4.11 Average Number of Trial Points Visited when the Number of Cost

Function Evaluations per Trial Point (n) equals 20 110

15

4.12 Algorithm Comparison when the Number of Cost Function Evaluations

per Trial Point (n) equals 20 . 110

4.13 Spatial Pull-in Robustness Simulation (Number of Cost Function Eval-

uations per Trial Point (n) equals 1) 115

4.14 Spatial Pull-in Robustness Simulation (Number of Cost Function Eval-

uations per Trial Point (n) equals 5) 115

4.15 BFGS Tracking Simulation (Number of Cost Function Evaluations per

Trial Point (n) equals 1) . 117

4.16 BFGS Tracking Simulation (Number of Cost Function Evaluations per

Trial Point (n) equals 5) . 117

D.1 List of Acronyms and Abbreviations Used in This Work 207

D.2 List of Symbols Used in This Work 208

16

Chapter 1

Introduction

1.1 Motivation for Work

The demand for Inertially Stabilized Platforms (ISPs) stems from multiple applica-

tions that span a wide spectrum of engineering disciplines. Several engineering prob-

lems give rise to the need to either track a target or keep a payload device pointed at

a fixed spot in inertial space while the given system operates in an environment which

is itself moving in inertial space. Examples of applications requiring inertial pointing

in dynamic environments include mobile Radio Frequency (RF) and optical commu-

nication systems, imaging and surveillance platforms, weapon targeting systems, and

satellite to satellite communication links [1–4]. Figure 1-1 shows a few examples of

systems that require ISPs. Many of these applications place strict requirements on

the allowable inertial pointing error; a requirement complicated by the base motion

of the given platform. ISPs minimize the effects of base motion disturbances enabling

maximum performance of the attached payload.

Mobile RF Satellite Communication (SATCOM) systems provide an important

arena for the application of ISP technology. The US military relies heavily on

SATCOM terminal systems as key nodes in large information networks [5]. SATCOM

often provides the only information medium capable of delivering required voice, imag-

ing, and video information to military assets in deployed locations [6]. For dispersed

military assets, SATCOM effectively spans distance, terrain, and hostile forces to

17

Figure 1-1: Photo examples of ISP Systems. Photos courtesy of Hilkert [4].

provide information to troops in need [7]. An increased expectation for instanta-

neous global communication also fuels a rapidly adapting commercial SATCOM mar-

ket [5, 8]. Mobile SATCOM terminals fulfill both a military and a commercial need

for global information availability, and the desire for instantaneous voice, picture, and

video information requires that SATCOM systems achieve high data-rates.

RF SATCOM systems must maintain inertial pointing error to within tolerances

specified by the components of the system in order to achieve the desired performance.

Data transfer rates and Bit Error Rates (BER) provide the metrics for determining

the performance of a SATCOM link, and these metrics may degrade substantially if

the pointing error from the terminal to the satellite is increased by only fractions of a

degree. An ISP in the form of a two-axis, servo-mechanical positioner with attached

antenna payload provides a relatively simple and cheap solution to the inertial point-

ing problem for a mobile SATCOM terminal [9]. The two-axis positioner hardware

requires the development of an adequate pointing strategy as well as an accompanying

control software suite.

18

1.2 Problem Statement

High data-rate RF SATCOM terminals require accurate spatial pointing of the an-

tenna payload. This thesis develops an inertial pointing strategy designed to meet the

pointing requirements for an airborne, Extremely High Frequency (EHF) SATCOM

terminal operating from a Boeing 707 aircraft owned and operated by MIT Lincoln

Laboratory. The terminal uses a two-axis, servo-mechanical Antenna Positioner Sys-

tem (APS) with a dish antenna payload. The pointing strategy developed for this

specific SATCOM application involves a hybrid open/closed loop approach. Open-

loop pointing in the context of this paper is defined as the pointing of an antenna at a

satellite without incorporating any RF signal strength measurements into the control

scheme. By contrast, closed-loop pointing methods do incorporate RF signal strength

feedback measurements in some fashion as a part of the pointing control strategy. It

is the goal of this thesis to recommend a solution to the antenna pointing problem

for the “EHF SATCOM on the 707” project, by:

1. Defining a nominal, two-axis APS and associated pointing requirements for

accomplishing an airborne EHF SATCOM mission

2. Developing an open-loop controller for the nominal APS using state-space and

optimal control techniques

3. Examining the performance of the open-loop pointing system through simula-

tion

4. Obtaining a model for the open-loop pointing error distributions in two orthog-

onal inertial coordinates

5. Examining ways that optimization programming strategies for nonlinear func-

tions may be applied to RF signal strength measurements to provide closed-loop

feedback in the form of refinements to the APS’s open-loop pointing commands

6. Comparing the performance of several optimization step-tracking algorithms, in

different configurations, on minimizing an antenna gain pattern cost function

19

7. Determining the overall feasibility of applying optimization methods to refine

open-loop pointing commands to minimize inertial pointing error

1.3 Contributions

This thesis makes the following contributions while accomplishing the objectives out-

lined in Section 1.2:

1. The thesis develops an open-loop pedestal controller, using optimal control tech-

niques, for a nominal two-axis, azimuth-elevation APS that mitigates the effects

of 707 aircraft motion and tracks input reference commands. The techniques

used to develop the open-loop controller for the nominal APS may be extended

to projects wishing to use two-axis pedestals on other mobile or stationary

SATCOM terminal systems.

2. A Simulink simulation is developed to test the performance of the open-loop

controller. The same simulation may be used in a slightly modified form to test

the open-loop pointing performance of similar APSs used on other SATCOM

terminals.

3. This thesis demonstrates the feasibility of using step-tracking algorithms to

accomplish closed-loop antenna pointing for a specific airborne SATCOM ap-

plication. The performance of several step-tracking algorithms is tested through

simulation, and the best performing algorithms are identified.

4. Simulations designed to test the robustness of the step-tracking algorithms are

also implemented to show that step-tracking provides a viable closed-loop point-

ing strategy even under harsher operating conditions than what may be ex-

pected for the nominal APS’s airborne EHF SATCOM mission. Although the

thesis develops step-tracking algorithms for use on a particular airborne termi-

nal system, the algorithms require only slight modifications to be used on other

SATCOM terminals.

20

5. This thesis demonstrates that accurate antenna pointing may be accomplished

by employing an open-loop pedestal controller in conjunction with a closed-loop

step-tracking algorithm. The hybrid open/closed-loop pointing strategy pre-

sented in this thesis may be implemented on future stationary and mobile SAT-

COM terminals. Hybrid pointing systems utilizing step-tracking procedures

require no additional hardware components to operate in a closed-loop fash-

ion and may, therefore, lead to the proliferation of simpler, more cost-effective

SATCOM terminal systems.

1.4 Thesis Overview

Chapter 2 of this thesis discusses the technologies available to accomplish a mobile

SATCOM mission. These technologies vary in complexity and cost, and Chapter 2

defines a nominal APS that will meet the pointing requirements for an airborne EHF

SATCOM mission with the simplest possible system. Thus, objective 1 from Section

1.2 is accomplished. Objectives 2 and 3 require the development of an open-loop

feedback controller for the nominal APS. Chapter 3 follows the development of the

feedback controller and develops linear and nonlinear open-loop pointing simulations.

Chapter 3 also develops a model for the statistical distributions of the components

of open-loop pointing error, satisfying objective number 4. The closed-loop point-

ing simulations implemented in Chapter 4 require an understanding of the behavior

of the open-loop pointing error. Chapter 4 develops step-tracking algorithms that

accomplish closed-loop antenna pointing. The step-tracking algorithms utilize non-

linear cost function optimization techniques, and several simulations are developed to

test the pointing performance of these algorithms in different configurations, accom-

plishing objectives 5 and 6. Finally, objective 7 is satisfied as the results of both the

open-loop pointing simulations and the closed-loop step-tracking simulations are dis-

cussed in Chapter 5 to determine the overall feasibility of a hybrid open/closed-loop

pointing strategy.

21

22

Chapter 2

Background and System

Architecture

Chapter Overview

Engineers may choose from multiple ISP configurations when determining the spatial

pointing approach that will meet the requirements of a given system. In mobile RF

SATCOM applications, the Antenna Positioner System (APS) serves as an ISP for

pointing an antenna payload at a target satellite to establish a communications link.

This chapter examines various configurations of APS hardware that could be used

to solve the inertial pointing problem in an RF SATCOM application. The sources

of error inherent in purely open-loop pointing strategies will be highlighted, and

the closed-loop pointing methods that may be implemented to compensate for these

shortcomings are discussed. Finally, this chapter identifies the hardware components

and pointing requirements for a nominal two-axis Antenna Positioner System that

closely models the actual APS used in the “EHF SATCOM on the 707 project.”

The development of a pointing strategy for this nominal APS will be the topic of

discussion in the following chapters.

23

2.1 APS Hardware Configurations

2.1.1 APS Components

An APS consists of all of the hardware components used to position an antenna

in order to maintain an effective communications link with a satellite. APSs used

in SATCOM On-The-Move applications share many common functional components

regardless of differences in form. The building blocks of an APS include the antenna

payload, servo-mechanical pedestal, gyroscopes and angular position sensors, Inertial

Measurement Unit (IMU) with GPS hardware, pedestal control computer, and any

necessary cabling and waveguide. The terminal’s modem provides the pedestal control

computer with signal strength measurements for use in closed-loop control schemes,

but the modem is not considered part of the APS. Figure 2-1 shows an APS block

diagram that may help the reader visualize the interconnect of APS hardware.

Figure 2-1: APS Interconnect Block Diagram. Figure courtesy of M. Gridley, MIT
LL, Group 61

2.1.2 Antenna Payloads

ISP pointing requirements are dictated by the type of payload sensor being positioned

and its role in the overall system architecture. In a mobile RF SATCOM application,

24

the ISP’s payload is the antenna that the terminal uses to transmit to and receive

data from the satellite. In high-bandwidth SATCOM applications, antennas must be

directional and must exhibit high gain in accordance with the requirements of the

terminal system [9]. Antenna gain, measured in dB, is a measure of how well a par-

ticular antenna directs electromagnetic energy relative to an isotropic antenna, which

collects and emits electromagnetic energy equally in all directions. The gain of a direc-

tional antenna changes depending upon the incidence angle at which electromagnetic

waves intersect the antenna’s boresight, or direction of maximum gain. The variation

of gain with respect to pointing angle away from boresight forms an antenna’s gain

pattern [9]. Figure 2-2 illustrates a nominal antenna gain pattern formed by varying

the incidence angle across a single axis orthogonal to the antenna’s boresight. Figure

2-3 shows the gain pattern formed when angular deviations from boresight occur in

two axes that are orthogonal to both the boresight direction and to each other.

Figures 2-2 and 2-3 show that the maximum gain occurs when angular variations

from boresight equal zero. The values of gain between the first nulls, or minimums,

of the gain pattern constitute the antenna’s mainlobe. As angular deviation from

boresight increases and a null is crossed, the gain rises again forming secondary peaks

known as sidelobes. Figure 2-2 also identifies the Half-Power Beamwidth (HPBW),

or the distance between points on opposite sides of the mainlobe peak with gain

values that are 3dB lower than the gain value at boresight. Directional antennas

in SATCOM systems are usually designed to operate within the HPBW in order to

achieve desired system performance; therefore, a directional antenna must be pointed

at a target satellite with a maximum pointing error equivalent to half the HPBW of

the antenna. Many systems require pointing accuracies better than half the HPBW,

but the HPBW serves as a means of comparing pointing accuracy requirements across

different terminal systems. In any system, the most desirable pointing scenario occurs

when the antenna’s boresight direction aligns perfectly with the terminal to satellite

pointing vector and the antenna is said to be on boresight.

Two factors which directly impact the width of the HPBW are antenna aperture

size and the transmit (TX)/receive (RX) frequencies at which the terminal operates.

25

Figure 2-2: Antenna Gain Pattern (24 in. dish)

Figure 2-3: Gain Pattern as a Function of Two Orthogonal Angles (24 in. dish)

26

Figure 2-4 graphically shows the variation in HPBW with respect to changes in dish

diameter and TX/RX frequencies for a dish antenna. Larger antennas produce higher

gains but have narrower HPBWs and may be cumbersome when operating in a mobile

environment. The size of the antenna also impacts the size, complexity, and cost of

the pedestal used to point the antenna [2]. Government regulations determine the

TX/RX frequencies for SATCOM systems, and the operating frequencies cannot be

changed by the design engineer. Because TX frequencies are usually higher than RX

frequencies, the terminal requires greater pointing accuracies when transmitting data

across the SATCOM link.

Figure 2-4: HPBW as a Function of Antenna Size and Operating Frequency. Figure
courtesy of Debruin [9].

Antennas may be steered electronically, mechanically, or by a combination of

electronic and mechanical means [9]. Dish antennas require mechanical steering;

whereas, array antennas may be steered mechanically or electronically. The use of

either type of antenna involves design trade-offs with implications on the pointing

control strategy. Array antennas accomplish a great deal of the pointing problem by

changing the phase of individual antenna elements on the array in order to change

the direction of the antenna’s boresight [10]. Therefore, if required at all, the antenna

positioner may need to only coarsely point the array in the general direction of a target

27

or control pointing in only one axis. Due to their small size and low profile, array

antennas may integrate nicely with the structure of the given vehicle in a mobile

application. However, array antennas are expensive relative to dish antennas, and

they involve complex control algorithms for the electronic steering of the mainlobe [9].

As array antennas are electronically steered, the sidelobes in the gain pattern rise and

fall resulting in required software algorithms to suppress them to acceptable levels [10].

Dish antennas are cheaper but necessitate a servo-mechanical pedestal to point the

antenna in the desired direction. Integrating the RF waveguide with the particular

pedestal-antenna combination may also be challenging. For instance, the APS may

require a waveguide assembly to carry RF energy through the positioner by means

of rotary joints. For multi-axis pedestals, this task becomes more difficult and poses

additional design constraints. The use of simpler positioners or electronically steered

array antennas alleviates some of the design challenges of the RF waveguide system.

Another consideration for selecting the appropriate antenna for a mobile SATCOM

application is the method of antenna stabilization around the pointing vector. Dish

antennas exhibit an advantageous property known as mass stabilization [9]. Mass

stabilization is an extension of Newton’s first law which affirms that objects at rest

tend to remain at rest. Thus, although dish antennas require a servo-mechanical

pedestal to steer the antenna to different points in the sky, the positioner system

requires only relatively small amounts of motor torque to stabilize the antenna once

it is pointed. Mass stabilization is most beneficial for SATCOM applications where

target satellites are in geostationary orbits because the look angles from the terminal

to the satellite change very little under these circumstances. Mass-stabilized systems

still require motor control systems to provide motor torques to account for bearing

friction and other disturbance torques as well as to slew the antenna to different

positions in the sky.

Electronically steerable array antennas are, by nature, non-mass-stabilized [9].

If all pointing is done electronically, the lack of mass-stabilization does not pose a

significant problem because there is no mass to move in order to steer the antenna;

however, if some of the pointing is accomplished mechanically, torques proportional

28

to the size of the movable components are required from the pedestal motors. Iner-

tial Pointing Applications utilize other forms of stabilization including momentum-

wheel-stabilization, where rotating masses are used to provide inertially stable plat-

forms for mounting sensors. Momentum-wheel-stabilization techniques pose problems

for applications requiring sensors that change inertial pointing directions frequently,

and the spinning momentum-wheels could interfere with vehicle motion. Therefore,

momentum-wheel-stabilization techniques are not widely applied to terminals in SAT-

COM On-The-Move applications [4].

2.1.3 Pedestals and Sensors

The physical characteristics of servo-mechanical pedestals generally consist of a struc-

tural framework capable of rotational motion called a gimbal to which an assembly

of motors, bearings, gyroscopes, and payload devices are attached [4]. Pedestals used

in APSs may be classified as one-axis, two-axis, or multi-axis systems according to

the number of controllable axes present. Figure 2-5(a) illustrates gimbal devices for

typical two-axis pedestals. Multiple gimbals may sometimes be constructed to control

a sensor payload in the same axis. This set-up typically takes the form of a coarse

outer gimbal and accompanying motor configuration with an inner fine gimbal and

motor configuration as seen in Figure 2-5(b). The capabilities needed to maintain

adequate pointing of the payload in the region of inertial space relevant to the ap-

plication determines the number of required controllable axes for a pedestal system.

In RF SATCOM applications, only the inertial axes orthogonal to the pointing

vector from the antenna to the target satellite need to be controlled by the APS.

Motion in the antenna’s roll axis is not relevant to the pointing problem due to the

symmetric nature of the gain pattern. Two-axis servo-mechanical pedestals using an

azimuth-elevation gimbal configuration are commonplace in SATCOM applications

because, together, the two axes provide a complete hemispherical field-of-regard [9].

Figure 2-6 shows the two-axis pedestal and antenna used on the “EHF SATCOM on

the 707 Project.” The azimuth-elevation positioner provides an adequate solution for

29

(a) 2-axis Gimbals (b) Redundant Gimbals

Figure 2-5: Gimbal Structures. Figures courtesy of Hilkert [4].

Figure 2-6: Two-axis Az/El positioner used in the “EHF SATCOM on the 707”
project

30

antenna pointing under many conditions. Additional steerable axes may be added to

the basic two-axis configuration to achieve added base motion disturbance rejection,

increase the field-of-regard of the pedestal, and to eliminate singularities that can

result from simple two-axis configurations [4].

The major concern with operating a two-axis, azimuth-elevation antenna posi-

tioner occurs when the application requires pointing in the keyhole region. The key-

hole region is loosely defined as pedestal operation at local elevation angles greater

than 80◦ [9]. During tracking, the azimuth motor attempts to correct for vehicle mo-

tions that occur in the roll axis of the pedestal’s base. The pedestal base roll axis is

the same as vehicle roll when the pedestal’s azimuth gimbal is aligned with the front

or back of the vehicle. Angular motion about the pedestal base roll axis corresponds

to rotations in the vehicle’s pitch direction when the pedestal’s azimuth gimbal is

pointed to either side of the vehicle. Vehicle motion in the roll axis of the pedestal’s

base becomes more difficult to account for with a two-axis pedestal as elevation angles

approach the keyhole region and a singularity known as gimbal lock results [4]. The

required azimuth motor velocity varies with elevation angle, el, according to

ȧzd = − tan(el)P ′Base −R′Base (2.1)

where ȧzd is the azimuth motor velocity required to maintain fixed inertial pointing,

P ′Base is the vehicle motion resolved in the roll axis of the pedestal’s base, and R′Base is

the vehicle motion resolved in the yaw axis of the pedestal’s base (Equations (A.17)

and (A.18)). Equation (2.1) clearly shows how an infinite azimuth motor velocity

is required at an elevation angle of 90◦, and the azimuth motor eventually lacks the

required torque to keep the antenna pointed correctly as elevation angles enter the

keyhole region. Several different configurations for multi-axis pedestals exist, but

most are designed explicitly to eliminate the gimbal lock singularity in the keyhole

region. The reader is referred to the literature for more information on multi-axis

pedestals [9,11]. Despite the advantages that multi-axis pedestals maintain over two-

axis configurations in avoiding gimbal lock, all else being equal, two-axis pedestals

31

are generally stiffer, cheaper, more compact, and less complex than their multi-axis

counterparts [9]. Therefore, the design engineer may find it beneficial to use a two-axis

pedestal whenever possible.

Angular position and rate sensors are typically installed in locations of interest on

the pedestal in order to facilitate feedback for the pedestal controller. Position sensors

may take the form of encoders or resolvers and are installed in the movable axes of

the pedestal. Angular position sensors exhibit different degrees of accuracy dependent

upon their complexity and cost. Gyroscopic sensors measure angular rates about the

axes of interest and vary greatly in terms of cost and performance. Figure 2-7 shows

the relative accuracies, in terms of scale factor and bias stabilities, for a number of

different types of gyroscopic sensors. Figure 2-7 also maps specific applications to

the different types of gyroscopic sensors that may be used in the applications. This

mapping provides a holistic comparison of the quality of gyroscopic sensors. Inertial

Measurement Units contain gyroscopes and accelerometers and measure the inertial

states of the vehicle upon which the pedestal is mounted. Because vehicles are not

true rigid bodies, they exhibit varying degrees of flexure necessitating placement of

the IMU in a location very near or on the base of the pedestal in order to obtain

accurate measurements of the vehicle’s motion. The accuracy and alignment of all

sensors impacts the pointing performance of the APS.

2.1.4 APS Design Requirements

The specific SATCOM mission determines the requirements that an APS must fulfill.

The design engineer must select the appropriate APS hardware such that all require-

ments of the system are met, and the desired inertial pointing accuracy is achieved.

The APS must meet specified size and weight requirements which are particularly

stringent for mobile terminal systems [2]. The mass and inertia of the antenna pay-

load determines the size and weight of the servo-mechanical pedestal. When size and

weight are limiting factors in design, the attainable pointing accuracy may become

a design tradeoff. For mobile terminals using mechanically steered antennas, the dy-

namics of the operating environment determine velocity and acceleration requirements

32

Figure 2-7: Gyroscope (IMU) Accuracy Mapped to Applications. Figure Courtesy of
Barbour and Schmidt [12].

for antenna movement. More severe operating environments require larger pedestal

accelerations and velocities, necessitating larger and more powerful actuators [2].

The operating environment dictates the required inertial pointing bandwidth of

the positioner. The positioner must have a bandwidth greater than the highest no-

table frequency component of the base motion disturbances caused by vehicle motion.

If the positioner lacks adequate bandwidth, then base motion disturbances at higher

frequencies will cause mispointing. The first major resonance of the pedestal structure

and attached antenna upper-bounds the positioner’s bandwidth [2]. If the positioner

is allowed to operate at frequencies near structural resonances, the pedestal structure

could deform or break. APSs must also meet jitter and repeatability requirements

which specify how well the pedestal controller can hold a particular look angle or

return to a previously commanded look angle.

2.2 Control Strategies

The pedestal control computer governs the motion of the APS’s servo-mechanical

pedestal. Pedestal sensor data as well as vehicle inertial state data from the IMU

are input to the pedestal controller which, in turn, outputs voltages that control

33

the DC motor circuits in the pedestal. The pedestal controller may also interface

with the terminal’s modem to receive RF signal strength measurements for use in

closed-loop pointing control strategies. The voltage outputs to the pedestal motors

are governed by feedback control loops that are implemented as a part of an overall

pointing strategy which may be open or closed-loop.

2.2.1 Open-loop Pointing and Sources of Error

Open-loop pointing techniques implemented in mobile SATCOM systems involve sim-

ilar pedestal control issues as those encountered in other applications such as fixed

ground station SATCOM, aerial surveillance, and weapon systems targeting [9]. The

goal of the controller in an open-loop configuration is to negate the effects of vehicle

base motion disturbances while simultaneously following an input reference command.

APSs used in mobile SATCOM applications continuously obtain measurements of the

vehicle’s inertial states and calculate desired look angles to the target satellite in the

pedestal’s local reference frame. These look angles are fed as reference commands to a

feedback control loop which steers the pedestal to the desired location. The kinematic

equations and coordinate transformations which govern the look angle calculations

for a two-axis APS are presented in Appendix A. The open-loop controller accounts

for base motion disturbances by quickly updating the look angle reference commands,

by direct feedback of the antenna’s inertial states to the feedback controller, or by a

combination of the two approaches.

Open-loop pointing strategies involve sources of error which may lead to mispoint-

ing of the antenna in inertial space. Notable sources of error which may not be taken

into account in open-loop pointing schemes include:

1. Aged satellite ephemeris data

2. Unmeasured IMU misalignment angles

3. Nonorthogonality of pedestal axes

4. Steady-state biases in pedestal position sensors and the IMU

34

5. Misalignment of gyroscopic rate sensors

Aged satellite ephemeris data causes inaccuracies in the pedestal look angle calcu-

lations that, in turn, cause steady-state inertial pointing errors. Unmeasured mis-

alignment angles, with components in the roll, pitch, and yaw angles between the

IMU and the pedestal base, cause pointing errors that are time-varying and become

coupled with the vehicle’s motion [13]. Nonorthogonality of the pedestal’s axes also

cause time-varying errors that are coupled with vehicle motion [14]. Sensor errors and

biases impact pointing error similarly to misalignment errors. Steady state biases in

the IMU and pedestal position sensors as well as gyro misalignments are sensor er-

rors which are difficult to measure and may go unaccounted for in open-loop pointing

strategies. Open-loop pointing strategies provide a viable means of conducting mobile

SATCOM operations provided that the sources of error present are small relative to

the allowable pointing error. If pointing error requirements are stringent and the pos-

sibility for sources of error likely, some form of closed-loop control strategy becomes

needed.

2.2.2 Closed-Loop Antenna Pointing Methods

In many RF SATCOM systems with stringent pointing requirements, a closed-loop

pointing strategy is needed to help mitigate the sources of error present in a purely

open-loop pointing approach. Many of these errors are time-varying and become

coupled with the dynamic motion of the vehicle in a mobile SATCOM application

and are, therefore, difficult to compensate for with open-loop pointing. Closed-loop

pointing strategies keep the antenna beam on boresight as deviations occur due to

errors in open-loop pointing. At this point it is helpful to divide closed-loop pointing

into two phases which occur in chronological order in a SATCOM terminal system;

spatial pull-in and tracking [15]. The spatial pull-in process removes initial antenna

pointing errors and terminates when the pointing error is reduced to some desirable

amount such as the antenna’s HPBW. Satellite tracking is any process which actively

uses feedback in order to steer the antenna beam on boresight [15]. Three of the

35

most prevalent closed-loop pointing techniques are monopulse, conical scan, and step-

tracking [16].

Monopulse tracking involves the use of additional hardware, in the form of one or

more antennas in addition to the main antenna, which measure the signal strength of

the communications link. By comparing the signal levels received in the monopulse

antennas, the main antenna may be steered in the appropriate direction to eliminate

pointing errors [17, 18]. Because the mispointing feedback is nearly continuous, con-

trollers can be designed to close the loop around the pointing error feedback metric.

Figure 2-8 shows a monopulse system design in which four separate monopulse an-

tennas are mounted directly to the feed used with a dish antenna. Implementation

of a monopulse system on a mobile SATCOM terminal could provide accurate and

robust closed-loop satellite tracking at the expense of a more complex system.

Figure 2-8: Monopulse Antenna System. Photo courtesy of S. Targonski, MIT LL,
Group 63

Conical scan (con-scan) systems harmonically raster the antenna beam to create

signal strength power variations used to estimate the location of the satellite [19]. An-

tenna beam rastering is accomplished with a dish antenna either by physically steering

the dish or by moving the feed assembly. The latter technique requires additional sys-

tem hardware components, as the feed itself must be mechanically steered, but may

be the more viable option for systems using larger dishes. Mobile SATCOM systems

may accomplish beam scanning by steering the dish with the pedestal, as dishes used

36

in mobile terminals are typically small and additional moving hardware components

are undesirable. Although conical scan methods pose a viable closed-loop pointing

solution for mobile SATCOM applications, the strategy must be implemented with

great care as the mobile pointing problem is greatly nuanced. Intentional antenna

mispointing must be weighed against desired pointing performance. The pointing

errors inherent in the open-loop control scheme also dictate how far the dish must be

dithered off boresight and directly impact the con-scan signal measurements. Typ-

ically, a continuous, harmonic scan pattern is followed with a period between 30

and 120 seconds [19]. Pointing errors and terminal system noise may dictate longer

con-scan periods because they necessitate longer integration times for obtaining ac-

curate signal strength measurements. If the con-scan period is too long, time-varying

pointing errors may go uncorrected.

Step-tracking methods are the simplest and least expensive to implement of the

closed-loop pointing techniques and typically require no additional system hardware

[11, 16]. The simplest step-tracking method compares signal strength measurements

obtained by physically changing the antenna’s angular position and then steers the

antenna in the direction of the higher power measurement. More complicated step-

tracking methods may be developed using nonlinear optimization techniques. Many

closed-loop systems, such as monopulse and con-scan, cannot engage in tracking until

the initial pointing error has been reduced to an acceptable amount in the spatial pull-

in stage. Step-tracking methods are perhaps the only means available to perform the

spatial pull-in task; thus, sound step-tracking techniques become more important

because of their use with other forms of closed-loop tracking.

The goal of each of the closed-loop pointing strategies mentioned above is to

improve the overall pointing performance of an APS, but all closed-loop methods add

a degree of complexity to the pointing problem and many require additional hardware

components which necessitate a more thoughtful APS design.

37

2.3 Nominal APS System Architecture

The APS used on the “EHF SATCOM on the 707” project incorporates each of

the hardware components seen in Figure 2-1. Figure 2-6 shows the actual two-

axis pedestal and dish assembly used on the project. The nominal APS, referenced

throughout the remainder of the paper, models this real-life system and is intended

to accomplish the same mission of airborne EHF SATCOM. The goal of the nominal

APS is to achieve the greatest pointing accuracy possible with the simplest, most

cost-effective system.

The nominal APS uses a parabolic dish antenna because it is more cost-effective

than an array antenna. The nominal APS will incorporate the same 24 in. diameter

dish design used in the “EHF SATCOM on the 707” project. The gain patterns

for the 24 in. dish are shown in Figures 2-2 and 2-3. The use of a dish antenna

necessitates a servo-mechanical pedestal in order to slew the antenna and correct for

disturbance torques on the dish. A two-axis, azimuth-elevation pedestal is selected

for the nominal APS because the operational tests for the “EHF SATCOM on the

707” project will be conducted at latitudes great enough to avoid pedestal operation

in the keyhole region. Thus, a larger, heavier, and more complex three-axis pedestal

is not required. The selection of a two-axis pedestal also simplifies the control system

design due to a reduced gimbal order. Cleveland Motion Controls(CMC) 2100 series

brush servo-motors with F windings are chosen as the steering motors in both the

azimuth and elevation axes of the nominal pedestal [20]. The CMC 2100 F servo-

motor is selected because the same motors were used with good results on a similar

sized three-axis pedestal for a land-vehicle SATCOM On-The-Move project conducted

at MIT Lincoln Laboratory in 2003. The operating environments for land-vehicles

subject antenna positioners to much harsher base motion disturbance dynamics than

those encountered in large aircraft. For this reason, the CMC 2100 F motors should

be adequate for use in an APS conducting airborne SATCOM.

The nominal pedestal incorporates accurate angular resolvers in both the azimuth

and elevation axes and includes a two-axis KVH Industries fiberoptic gyroscope pack-

38

age mounted to the elevation gimbal in order to measure the inertial rates of the dish

antenna in the pitch and yaw axes [21]. The fiberoptic gyroscopes used are employed

in munitions guidance systems and should provide adequate measurements in spatial

tracking applications (Figure 2-7). The project uses a C-MIGITS IMU system to

measure the inertial states of the 707 aircraft at the location where the pedestal is

mounted. The C-MIGITS is a navigation-grade IMU that is also frequently used in

munitions guidance applications [22].

The nominal APS must incorporate a pedestal feedback controller which will limit

inertial pointing error to within 0.1◦ (3-σ) of boresight in an open-loop pointing

simulation. The gain patterns for the 24 in. dish shown in Figures 2-2 and 2-3

illustrate that an inertial pointing error of 0.1◦ would have a negligible impact on the

quality of the SATCOM link. Because of the sources of error identified in Section

2.2.1, the desired pointing requirement of 0.1◦ may not be achievable while operating

in a purely open-loop fashion. For this reason, the nominal APS requires inertial

pointing to within 0.25◦ of boresight or better in a closed-loop pointing simulation.

Inertial pointing error of 0.25◦ corresponds to a 0.4 dB loss in signal strength and

would have very little impact on the overall performance of the SATCOM link (Figure

2-2). With the hardware and pointing requirements for the nominal APS now defined,

the open-loop portion of the hybrid pointing control strategy may be developed.

39

40

Chapter 3

Open-Loop Controller

Development

Chapter Overview

Open-loop pointing strategies necessitate a feedback controller for the mechanical

pedestal used to position the antenna payload. In this chapter, a Linear Quadratic

Gaussian (LQG) controller will be developed, based on the nominal two-axis APS

defined in the previous chapter, to effectively control the pedestal’s azimuth and

elevation DC servo-motors. For typical flight profiles, this controller will be able to

reduce the effects of base motion disturbances caused by aircraft motion and keep the

antenna dish inertially pointed at a target satellite. The controller will operate in a

closed-loop fashion, obtaining feedback from the inertial states of the antenna, but

because RF signal strength measurements are not introduced into the control scheme,

the resulting controller is classified as open-loop in the context of the definitions

from Section 1.2. After the feedback controller is developed, and the performance is

simulated, the statistical distributions for the components of inertial pointing error

will be modeled for use in closed-loop pointing simulations developed in the next

chapter.

41

3.1 Equations of Motion

3.1.1 Response Side

In any control system design process, the first step is to determine the Equations

of Motion (EOM) for the dynamics of the system plant. The plant constitutes the

physical system that is to be controlled [23]. In the case of an APS, the servo-

mechanical pedestal and attached antenna comprise the system plant. First, because

the goal of the controller is to hold the dish inertially stable, an inertial coordinate

frame with respect to the dish is defined and called the Antenna Body Coordinate

Frame. The Antenna Body Coordinate Frame is represented by the solid axes lines in

Figure 3-1. The equations of motion used to model the antenna positioner dynamics

are derived from the standard rotating rigid body equations of motion [4, 24].

Ṗ Ixx +QR(Izz − Iyy)− (Q2 −R2)Iyz − (Ṙ + PQ)Ixz + (PR− Q̇)Ixy =
∑
x

T (3.1)

Q̇Iyy − PR(Izz − Ixx) + (P 2 −R2)Ixz − (RQ+ Ṗ)Ixy + (PQ− Ṙ)Iyz =
∑
y

T (3.2)

ṘIzz + PQ(Iyy − Ixx)− (P 2 −Q2)Ixy − (PR + Q̇)Iyz + (QR− Ṗ)Ixz =
∑
z

T (3.3)

In Equations (3.1)-(3.3), P , Q, and R represent inertial rotation rates in the antenna

Body roll (x), pitch (y), and yaw (z) axes respectively, the I terms represent moments

or cross products of inertia, and the T terms represent applied torques in the corre-

sponding axes. Translational equations of motion are ignored in the development of

antenna positioner equations of motion because they have negligible effects on satel-

lite pointing accuracy due to the great distance from the terminal to the satellite [9].

Because of the symmetry of the antenna and the pedestal elevation axis gimbal, all

of the cross products of inertia in (3.1)-(3.3) are assumed to be zero. The response

sides (LHS) of Equations (3.1)-(3.3) are linearized about a stationary operating point

(coinciding with the desired pointing vector), according to the technique described

in [24], and no steady state antenna yaw, pitch, or roll velocities are incorporated

into the linearized response side of the EOMs. The resulting linearized response side

42

Figure 3-1: Pedestal Coordinates

of the Equations of Motion reduces to Equation (3.4) where Ṗ , Q̇, and Ṙ represent

inertial perturbation accelerations in each of the Body axes around the stationary

operating point.
Ixx 0 0

0 Iyy 0

0 0 Izz

Ṗ

Q̇

Ṙ

 =

∑

x T∑
y T∑
z T

 (3.4)

3.1.2 Moment Side

The right hand side of (3.4) consists of the applied moments which act on the dish.

The two sources for applied moments are motor torques and base motion disturbance

torques which will be discussed later. The two-axis nominal APS has two DC motors

which effect changes in both the azimuth (z’) and elevation (y = y’) axes which are

represented in the Antenna Base Coordinate Frame. Figure 3-1 depicts the antenna

Base Coordinate Frame with dashed axis lines. At this point it is convenient to

completely specify local azimuth and elevation look angles. Local azimuth is specified

as a rotation about the z’ axis clockwise from the x’ axis unit vector and may range

from 0-360◦. Elevation is specified as a rotation about the y’ axis above the xy plane

and may range from 0-90◦. The relationship between the antenna’s Body coordinates

(x,y,z) and Base coordinates (x’,y’,z’) involves a coordinate transformation through

43

a negative elevation angle (3.5).

x′

y′

z′

Base

=

cos(el) 0 sin(el)

0 1 0

− sin(el) 0 cos(el)

x

y

z

Body

(3.5)

Because the azimuth motor acts in the z’ axis, its applied torque enters nonlinearly

into the Body x and z axes due to a coordinate transformation; whereas, the elevation

motor applies torque directly to the Body y axis (3.6).

∑

x Tmotor∑
y Tmotor∑
z Tmotor

 =

− sin(el)Taz

Tel

cos(el)Taz

 (3.6)

For a DC motor, applied torques (T) are proportional to the current in the arma-

ture circuit, ia (3.7). In Equation (3.7), Km is the motor constant for the particular

DC motor. The armature current is governed by a differential equation that accounts

for armature inductance (La) and resistance (Ra), back emf voltage (eb), and applied

armature voltage (ea) (3.8). Back emf voltage results from the rotating armature and

is proportional to the angular velocity (θ̇1) of the motor shaft by a constant, (Kb),

which is approximately the reciprocal of Km (3.9). The applied armature voltage is

the value eventually determined by the feedback controller to effect the desired motor

torque [23].

T = Kmia (3.7)

ea = La
dia
dt

+Raia + eb (3.8)

eb = Kbθ̇1 (3.9)

If armature inductance is neglected, which is often the case due to its small value, then

the applied motor torques for the azimuth and elevation motors may be represented

44

as in (3.10) and (3.11).

Taz =
Kmaz

Raaz

eaaz −
KmazKbaz

Raaz

[− sin(el)θ̇roll + cos(el)θ̇yaw] (3.10)

Tel =
Kmel

Rael

eael −
KmelKbel

Rael

θ̇pitch (3.11)

In Equations (3.10)-(3.11) the angular velocities of the motor shafts, represented in

the Base coordinate frame, are expressed in terms of the angular velocities of the dish

with respect to the aircraft in the Body frame (3.12).

θ̇roll

θ̇pitch

θ̇yaw

Base

=

cos(el) 0 − sin(el)

0 1 0

sin(el) 0 cos(el)

0

θ̇el

θ̇az

Body

(3.12)

The nominal APS incorporates a gear train to magnify the applied steering torques

on the dish without using larger motors. The gear ratio (ng) is defined as the ratio

of the radius of the smaller gear (r1), mounted to the motor shaft, to the radius of

the larger gear (r2) that is mounted to the output shaft [23]. The following relation-

ship relating the angular velocities of the motor shaft and the output shaft may be

determined [23]:

θ̇2

θ̇1

=
r1

r2

= ng (3.13)

where θ̇1 is the angular velocity of the motor shaft and θ̇2 is the angular velocity of

the output shaft. Using Equation (3.13) and the fact that the inertias of the motor

shafts are very small compared to the inertias of the antenna and elevation gimbal

assembly, Equations (3.4), (3.6), (3.10), and (3.11) may be combined, incorporating

the gear train, to yield (3.14).

45

Ixx 0 0

0 Iyy 0

0 0 Izz

Ṗ

Q̇

Ṙ

 =

− Kmaz
ngRaaz

eaaz sin(el)− KmazKbaz
n2
gRaaz

sin2(el)θ̇roll

+
KmazKbaz
n2
gRaaz

sin(el) cos(el)θ̇yaw +
∑

x Tdisturbance

Kmel
ngRael

eael −
KmelKbel
n2
gRael

θ̇pitch +
∑

y Tdisturbance

Kmaz
ngRaaz

eaaz cos(el) +
KmazKbaz
n2
gRaaz

sin(el) cos(el)θ̇roll

−KmazKbaz
n2
gRaaz

cos2(el)θ̇yaw +
∑

z Tdisturbance

(3.14)

The moment side of (3.14) has several trigonometric nonlinearities arising from coor-

dinate transforms. Since the feedback controller that will be implemented acts on a

linear plant model, (3.14) must be linearized. The system in (3.14) is linearized about

a 0◦ elevation angle operating point in order to remove completely the trigonometric

functions. The effects of this linearization and the resulting measures used to com-

pensate for it in the simulation of the controller-system plant are discussed in 3.2.6.

Once the disturbance torques in (3.14) are appropriately modeled, the linear plant

model for the servo-mechanical pedestal will be complete.

3.1.3 Base Motion Disturbance Modeling

With a two-axis APS configuration, even if a mass-stabilized antenna is used, aircraft

motion in the Base coordinate system x’ axis causes antenna mispointing when ele-

vation angles are greater than 0◦ and must be accounted for. For instance, when the

elevation angle is 30◦ and the antenna is pointed at an azimuth angle of 0◦ (x’ axis

aligned with nose of aircraft), aircraft roll motion will cause the antenna to move off

of boresight. Similarly, at an azimuth angle of 90◦, aircraft pitch motion will cause the

antenna to mispoint. The aircraft base motion also affects dish movement through

friction with the bearings and motors in the azimuth and elevation axes. Because

this friction is difficult to model, the aircraft’s motion is assumed to always directly

affect the antenna motion and a feedback controller must be used to compensate for

the disturbances. Aircraft Euler angle
(

heading (Ψ), pitch (Θ), and roll (Φ)
)

rates

were recorded for a representative 707 flight pattern and then translated into Aircraft

46

coordinates using Equation (3.15) [24]. Figure 3-2 shows the Aircraft Coordinate

Frame.
Pa/c

Qa/c

Ra/c

Aircraft

=

− sin ΘΨ̇ + Φ̇

sin Φ cos ΘΨ̇ + cos ΦΘ̇

cos Φ cos ΘΨ̇− sin ΦΘ̇

 (3.15)

Figure 3-2: Aircraft Coordinate Frame. Photo courtesy of www.mathworks.com.

Next, Equation (3.16) translates the aircraft disturbance rates through the de-

sired local azimuth and elevation look angles required to maintain tracking of the

target satellite. The desired look angle calculations are presented for the reader in

Appendix A. The resulting disturbance rates for the representative flight pattern are

now resolved in the antenna Body coordinate frame.
DP

DQ

DR

Body

=

cos(eld) 0 − sin(eld)

0 1 0

sin(eld) 0 cos(eld)

cos(azd) sin(azd) 0

− sin(azd) cos(azd) 0

0 0 1

Pa/c

Qa/c

Ra/c

Aircraft

(3.16)

DP , DQ, and DR represent the input disturbance rates in the antenna Body x, y,

and z axes respectively. In order to model these disturbance rate inputs to the posi-

tioner control system, Power Spectral Density (PSD) plots were created using Welch’s

method for each of the antenna axes [25]. For simplification, the axis containing the

harshest disturbance rates was selected as a model of the disturbance motion inputs

to all three antenna axes. A second-order transfer function is used to over-bound

the PSD of the harshest disturbance rate input and its frequency response is overlain

on the PSD plot in Figure 3-3. The stable square root of the second-order transfer

47

Figure 3-3: Disturbance Rate Input Power Spectral Density (Antenna Body z Axis)

function forms the model for a coloring filter through which white noise with unit

density is passed and emerges as colored noise with approximately the same spectral

content as the true disturbance rate [26]. The coloring filter may be represented in

either transfer function or state-space form:

DP,Q,R

w3

=
0.03533

s+ 0.6283︸ ︷︷ ︸
Filter Transfer Function

or ḊP,Q,R =

Afilt︷ ︸︸ ︷
−0.6283DP,Q,R +

Bfilt︷ ︸︸ ︷
0.03533w3︸ ︷︷ ︸

Filter State Equation

The filter state equation contains the term, ḊP,Q,R, which represents a disturbance

acceleration in one of the three antenna axes. Further relationships between the

response side inertial variables and moment side relative motion variables in Equation

(3.14) may now be identified. The progression in Equations (3.17)-(3.19) uses the

antenna’s pitch axis as a representative example although the same relationships are

defined in the other two Body axes as well:

48

IyyQ̇ = Iyy(θ̈pitch + ḊQ) =
∑
y

Tmotor +
∑
y

Tdisturbance (3.17)

Q = θ̇pitch +DQ (3.18)

q = θpitch +

∫
DQ (3.19)

where q is the inertial pointing error angle away from the stationary operating point

(terminal to satellite pointing vector) about the y Body axis and
∫
DQ is the relative

angular position of the aircraft from the pointing vector about the y Body axis.

Similarly, p and r define inertial error angles away from the pointing vector in the x

and z Body axes respectively while
∫
DP and

∫
DR represent relative aircraft angular

positions away from the pointing vector in the x and z Body axes respectively. At

this point a definition for total inertial pointing error may be defined as in (3.20)

where ∆ is the total inertial pointing error. Note that p does not affect the inertial

pointing error as the antenna’s roll motion cannot induce mispointing.

∆ =
√
q2 + r2 (3.20)

3.1.4 Linear Plant Model

With the disturbance torques and state variables defined, Equation (3.14) is rewritten

as Equation (3.21). If the moment side of Equation (3.21) is linearized about a 0◦

operating point, as alluded to in Section 3.1.2, the trigonometric functions vanish and

the antenna roll and yaw equations decouple. The roll equation is left unmodeled in

the development of the linear plant model because antenna roll motion does not affect

pointing and is uncontrollable with a two-axis, azimuth-elevation pedestal configura-

tion [4]. In the decoupled, linearized system, the EOMs for antenna pitch and yaw

motion differ only in the motor and inertia parameters chosen. The linearized state

equations for the pitch axis dynamics, and as an extension the yaw axis dynamics, are

presented in Equation (3.22) augmented with the aircraft disturbance coloring filter

state equation. Equations (3.22)-(3.23) constitute the linear, time invariant (constant

coefficient matrices) state-space representation of the plant model that will be used

49

when developing the simulated, open-loop, pedestal feedback controller. The w and v

variables in (3.22)-(3.23) represent white Gaussian process and sensor noises respec-

tively that are added to the linear system dynamics. The modeling of these noise

inputs is discussed in greater detail in the next section.

Ixx 0 0

0 Iyy 0

0 0 Izz

P

Q

R

 =

− Kmaz
ngRaaz

eaaz sin(el)− KmazKbaz
n2
gRaaz

sin2(el)[P −DP]

+
KmazKbaz
n2
gRaaz

sin(el) cos(el)[R−DR] +
∑

x Tdisturbance

Kmel
ngRael

eael −
KmelKbel
n2
gRael

[Q−DQ] +
∑

y Tdisturbance

Kmaz
ngRaaz

eaaz cos(el) +
KmazKbaz
n2
gRaaz

sin(el) cos(el)[P −DP]

−KmazKbaz
n2
gRaaz

cos2(el)[R−DR] +
∑

z Tdisturbance

(3.21)

Iyy 0 −Iyy
0 1 0

0 0 1

ẋ︷ ︸︸ ︷
Q̇

Q

ḊQ

 =

A︷ ︸︸ ︷
−KmelKbel

n2
gRael

0
KmelKbel
n2
gRael

1 0 0

0 0 Afilt

x︷ ︸︸ ︷
Q

q

DQ

+

Bu︷ ︸︸ ︷
Kmel
ngRael

0

0

 eael

+

Bw︷ ︸︸ ︷
1 0 0

0 1 0

0 0 Bfilt

w1

w2

w3

 (3.22)

y =

Cy︷ ︸︸ ︷1 0 0

0 1 0

Q

q

DQ

+

v1

v2

 (3.23)

50

3.2 Controller Development and Simulation

Several approaches to developing feedback controllers for the pedestal motors are

available to the engineer. Classical control methods using Proportional Integral

Derivative (PID) tools and frequency-domain techniques, such as lead and lag filter

designs, are prevalent in industry and are often applied for use with DC servo-motors.

However, classical control design techniques do not take limitations on control efforts,

such as motor torques or armature voltages, into account and typically require many

iterations to reach an acceptable end design. The limitations of classical control the-

ory have, in part, led to the proliferation of state-space controller design techniques.

State-space techniques also serve as the tool for developing controllers for multiple-

input multiple-output (MIMO) systems. Because the aircraft motion disturbance

state, process noises, and sensor noises are present, the linear plant model developed

in Section 3.1.4 becomes a MIMO system. A deterministic, linear, time-invariant

state-space system representation takes the form:

ẋ(t) = Ax(t) +Buu(t) (3.24)

y(t) = Cyx(t) +Du(t) (3.25)

Equations (3.22) and (3.23) resemble Equations (3.24) and (3.25) if the process and

sensor noises in the linearized plant model are neglected. Here, x is the state vector,

u is the control input vector, and y is the system output vector.

The main precept behind state-space control techniques involves the use of state

variable feedback in which combinations of the variables in the state vector, x, are fed

back into the system as control inputs through a gain matrix, K, in order to achieve

the desired closed loop system response. Using state variable feedback, the negative

feedback control law becomes:

u(t) = −K(t)x(t) (3.26)

51

Assuming that the state vector is deterministic and perfectly measurable, this strategy

allows the engineer to place the poles of the closed-loop system anywhere on the s-

plane by adjusting the values of the gains inside the K matrix accordingly, a technique

known as pole-placement [26,27]. Changing the location of the closed-loop poles in the

s-plane directly impacts the speed and nature of the closed-loop system’s response [23].

For the pedestal control system, it is desirable for the closed loop system poles to be

in the Left Half-Plane (LHP) of the s-plane to ensure system stability. The poles

must also lay far enough to the left of the origin of the s-plane so that perturbations

in the system states, specifically the yaw and pitch components of pointing error, are

quickly driven to zero. Moving the closed-loop system’s poles farther into the LHP

requires greater control effort, so a balance between speed of response and amount

of control input must be determined. The pole placement technique provides the

engineer with a useful tool, but pole placement alone offers no strategy as to where

exactly in the LHP the poles of the closed loop system should be placed. The optimal

control technique known as Linear-Quadratic Gaussian design (also called H2 design)

solves this problem by weighing the cost of control efforts against desired system

response, in the presence of system and measurement uncertainties, in the design of

the controller. An LQG controller will be designed for the nominal APS from Section

2.3 after the theory behind LQG controller design is briefly discussed.

3.2.1 Linear-Quadratic Regulation Theory

For linearized plant models, a quadratic cost functional may be developed that pe-

nalizes both state vector perturbations and applied control efforts. In the context

of the pedestal controller system, the state perturbations of greatest concern are the

pointing errors in the antenna yaw and pitch directions. The control efforts are the

applied voltages to the azimuth and elevation servo-motor circuits which cause applied

torques on the pedestal’s gimbals. A quadratic cost functional is justified because it

has the general effect of keeping a linear system model as honest as possible [27]. The

52

quadratic cost functional for a linear, time-invariant system may be represented as:

J =
1

2
xT (t)Ptfx(t) +

1

2

∫ tf

t0

[xT (t)Rxxx(t) + uT (t)Ruuu(t)]dt (3.27)

where Rxx and Ruu are the state and control weighting matrices that determine the

degree of penalty placed upon state perturbations and exacted control efforts and Ptf

is the cost-to-go matrix evaluated at the terminal time [26–28]. Assuming determin-

istic, full-state feedback, a time varying value for K(t) in Equation (3.26) may be

found which minimizes (3.27) at every instance in time. Finding the optimal value

of Ko(t) which minimizes (3.27) is known as solving the Linear-Quadratic Regula-

tion problem. For a time invariant system the value of Ko(t), the optimal regulator

gain, is determined by the relationship K(t)o = R−1
uuB

T
u P (t) where P (t) is the time

varying cost-to-go matrix and is the solution to the Matrix Differential Riccati Equa-

tion [26–28]:

−dP
dt

= P (t)A+ ATP (t) +Rxx − P (t)BuR
−1
uuB

T
u P (t) (3.28)

Equation (3.28) may be solved for P (t) backwards in time with the specified boundary

condition, Ptf , from Equation (3.27). If the final time is assumed to be infinitely far

off, an assumption valid for the pedestal controller application, then P (t) reaches a

steady-state value as it is solved backwards in time, and (3.28) reduces to:

0 = PA+ ATP +Rxx − PBuR
−1
uuB

T
u P (3.29)

Equation (3.29) is known as the Algebraic Riccati Equation [26]. The steady state

value of P solved for in (3.29) may be used to find the steady state value of the

gain matrix, Ko, and both values may be easily calculated when the controller is off-

line [27]. Once the value of Ko is found for a deterministic, full state feedback case,

the control law in (3.26) may be implemented and the performance of the resulting

controller, known as the Linear-Quadratic Regulator (LQR), on the actual system

may be simulated or observed.

53

3.2.2 Linear-Quadratic Estimation Theory

In most LQR systems, the assumptions that the state vector can be fully measured

and that the system is deterministic do not hold, and the regulator must be augmented

with a state estimator. For example, the linearized pedestal plant model for either the

antenna pitch or yaw axis dynamics presented in Equations (3.22)–(3.23) contains an

immeasurable disturbance rate input state, DQ,P , which must be estimated. Modeling

errors, actuator disturbances, and the effects of non-linearities on a linearized system

plant constitute process noises, and any errors in the sensing of the measured states

may be added to the plant model as sensor noises [27]. Process and sensor noises

make the modeled dynamics of the given linear, time-invariant plant a stochastic one

which may be represented as

ẋ(t) = Ax(t) +Buu(t) +Bww(t) (3.30)

y(t) = Cyx(t) +Du(t) + v(t) (3.31)

where w(t) represents process noise inputs to the system and v(t) represents sensor

noise. The system representation in Equations (3.30)–(3.31) describes the system

in Equations (3.22)–(3.23) if (3.22) were multiplied through by the inverse of the

inertia matrix. If information is known about the structures of the noises, then the

noise dynamics may be modeled and augmented with the linear system model as

shown in Section 3.1.3. If no information about the noises’ structures is known, they

may be assumed to be white Gaussian noise processes. The assumption of white

Gaussian noise is a worst-case scenario [27]. The white noise inputs to the stochastic

system plant have covariance intensity matrices Rww and Rvv for process and sensor

noises respectively. Using white noise with specified intensities provides a means

of culminating the uncertainties in the linear system into “catch-all” factors. It is

desirable to develop an estimator to approximate the state variables with the minimal

amount of estimation error while optimally balancing the effects of both process and

sensor noises in the system. The estimated state vector is written as x̂ and the est-

54

imation error as x̃ (Equations (3.32) and (3.33)). The estimation dynamics for a

linear, time-invariant system may be written as

˙̂x(t) = Ax̂(t) +Buu(t) + L(t)(y(t)− Cyx̂(t)) (3.32)

x̃ = x− x̂ (3.33)

where L(t) is the estimator gain applied to the innovation or difference between

measured and predicted system outputs. The estimator gain determines where in the

LHP the estimator poles are located. Generally, it is desirable for the estimator poles

to be faster than the regulator poles so that the estimated state vector may be used for

regulator feedback without introducing large errors. The Kalman-Bucy filter provides

the optimal solution to the Linear-Quadratic Estimation problem and decides where

in the LHP the estimator poles should be placed based on the relative intensities of the

process and sensor noises. Applying the Kalman-Bucy filter, the value of Lo(t), the

optimal estimator gain, is governed by the relationship Lo(t) = Q(t)CT
y R
−1
vv [26, 27].

The estimation error covariance matrix, Q(t), is found from the solution of the Matrix

Differential Riccati equation:

dQ

dt
= AQ(t) +Q(t)AT +BwRwwB

T
w −Q(t)CT

y R
−1
vv CyQ(t) (3.34)

Equations (3.28) and (3.34) bear strong resemblance to each other and are, in fact,

mathematical duals [26,27]. The steady-state value of Q may be found by the solution

of the Algebraic Riccati Equation, (3.35), if the initial time is assumed to have oc-

curred in the distant past [27], an assumption that is generally valid for the pedestal

control application.

0 = AQ+QAT +BwRwwB
T
w −QCT

y R
−1
vv CyQ (3.35)

55

3.2.3 Linear-Quadratic Gaussian Theory

The separation principle states that the optimal regulator and estimator gains can

be solved for independently [29]. The resulting Linear-Quadratic Gaussian (LQG)

controller dynamics may be written as

˙̂x(t) = (A−BuKo − LoCy)x̂(t) + Lo(t)y(t) (3.36)

u = −Kox̂ (3.37)

where the estimated plant state, x̂(t), is also the controller state variable [26, 27].

The controller dynamics may be augmented with the linear system plant dynamics

to form the closed-loop system. The poles of the closed-loop, linear system, which

govern the nature and speed of the system’s response, are simply the union of the

regulator and estimator poles. The closed loop poles of the regulator may be found

by calculating the eigenvalues of the (A − BuKo) matrix, and the estimator poles

are found by solving for the eigenvalues of the (A − LoCy) matrix. Equation (3.37)

highlights the new control law for the LQG controller, u(t) = −Kox̂(t), which is

actually the optimal feedback strategy for the stochastic Linear-Quadratic control

problem. For a proof of the optimality of the LQG control strategy, the reader is

referred to the literature [26,30].

3.2.4 Reference Commands

The ability for the pedestal controller to track an input reference command is needed

in order to slew the antenna to various positions in the sky to track different target

satellites and to intelligently dither the antenna’s mainlobe in order to implement a

closed-loop pointing strategy. Perhaps the best strategy for implementing a reference

command in an LQG controller is to ensure that the estimation error is independent

of the reference command [31]. This strategy is accomplished by changing the form

of the controller dynamics in Equations (3.36)–(3.37) so that the controller explicitly

has two inputs, the measurement states, y, and the reference command, r (3.38). The

56

feedback control law is also changed to incorporate the reference command (3.39).

˙̂x(t) = (A−BuKo − LoCy)x̂(t) + Lo(t)y(t) +BuN̄r (3.38)

u = −Kox̂ + N̄r (3.39)

Finally, the N̄ matrix is selected such that the gain of the closed-loop transfer function

Y(s)/R(s) equals one at DC which ensures accurate steady-state tracking of an input

reference command [31].

3.2.5 Development of the LQG Pedestal Controller in

MATLAB

This section develops an LQG pedestal feedback controller for the nominal APS with

the aid of the MATLAB programming language. MATLAB is a scripting language

used for technical computing and for developing visualizations and simulations. The

MATLAB script referenced in this section uses several predefined functions found in

MATLAB’s Control System Toolbox. The MATLAB m-file ‘controller.m’, found in

Appendix B.1, implements an LQG controller for the elevation motor of the nomi-

nal APS pedestal. The linearized plant model used in the controller’s development

is described by Equations (3.22)–(3.23), and the motor parameters used are those

published in the specifications sheet for the Cleveland Motion Controls 2115 servo-

motor with an F winding [20]. As an approximation to the moments of inertia for

the combined antenna and elevation gimbal assembly, the calculated inertias of the

24 in. dish antenna are used in the derivation of the LQG controller. Because the

same linearized plant model presented in Equations (3.22)–(3.23) is used to describe

both the antenna’s yaw and pitch dynamics, ‘controller.m’ is also used to develop

the controller for the azimuth servo-motor. The nominal APS uses the same mo-

tors in both the azimuth and elevation axes, so the motor parameters do not change

for the development of the azimuth motor controller. Also, because the Iyy and Izz

moments of inertia for the 24 in. dish are equal, and the inertia of the dish is used

57

to approximate that of the dish plus the attached elevation gimbal, the moment of

inertia parameter is the same in both the elevation and azimuth controllers. Thus,

‘controller.m’ initially produces controllers for the elevation and azimuth servo-motors

that are identical and collectively referred to as the LQG controller.

A gearing ratio of 10:1, radius of the larger output gear to the radius of the smaller

motor gear, is used in the LQG controller development which leaves ng in (3.22) equal

to 0.1. This gearing ratio ensures that adequate torques are applied to the antenna

to cancel the effects of the aircraft’s motion in the yaw and pitch axes of the antenna.

The value of N̄ , the parameter introduced in Section 3.2.4, is obtained by setting

the transfer function Y(s)/R(s) equal to one at DC and comes out to be 181.185 for

the pedestal controller. The state weighting matrix, Rxx, for the Linear-Quadratic

Regulator portion of the LQG controller is determined using Bryson’s rule which

simply states that the diagonals of Rxx be set to 1/(max allowable perturbation)2

[28]. The maximum allowable perturbations for the velocity and position states were

exaggerated to be 20
◦

sec
and 0.01◦, respectively. No weighting was placed on the filter

state equation in the Rxx matrix.

For this system, Ruu is a scalar, rather than a matrix, and its value is left as a

design parameter to adjust the level of resulting pointing error in the LQR. Addition-

ally, the Ruu value determines the placement of the regulator poles which must be

placed with the location of the estimator poles in mind. The Rww weighting matrix

contains the variances of the process noises for each of the state equations in (3.22).

The variance of the white noise input on the filter state equation, w3, is already deter-

mined by the modeling of aircraft disturbance motion and is set such that the power

spectral density of w3 is unity. The values of the variances for w1 and w2 are chosen

to be the largest values possible such that the added process noises have negligible

effects on the pointing performance of the LQR. All three white noise inputs are sim-

ulated in ‘controller.m’ by multiplying the variances by MATLAB’s ‘randn’ function

for use in a closed-loop simulation of the controller and linear plant model.

The last design parameter in the LQG controller development process is the se-

lection of the Rvv matrix. This matrix determines the weighting on the sensor noises

58

present in the pedestal system. The weights on the individual sensor noises should

be chosen with regard to the variances present in the corresponding sensor measure-

ments. The two states measured in the pedestal system are the antenna’s inertial

angular displacement and inertial angular velocity. The antenna’s inertial displace-

ment from the nominal pointing vector is calculated using the measurements of the

resolvers, which sense local angular position in both the azimuth and elevation axis,

and the C-MIGTIS IMU, which measures the Euler angles and rates of the aircraft.

The inertial displacement measurement calculations are derived in Section 3.2.6.

The C-MIGITS specifications sheet lists a 1-σ standard deviation for attitude

measurements of 1 milliradian. The resolver measurements are assumed to be highly

accurate when compared to the errors inherent in the IMU measurements; thus, the

total variance in the antenna’s inertial angular displacement measurement is approx-

imated as the square of the published C-MIGITS 1-σ attitude error. The antenna’s

inertial angular velocity measurement is assumed to be more accurate than the po-

sition measurement since the fiberoptic gyro sensors are purported to have small

variances [21]. Also, the velocity measurements are output directly from the KVH

fiberoptic gyros and do not need to be calculated like the position measurements do

(See 3.2.6). For these reasons, the variance of the inertial velocity measurement is

assumed to be an order of magnitude smaller than the variance of the angular dis-

placement state. The assumed variances for the measured displacement and velocity

states are used to simulate the sensor noises, v1 and v2, in the closed loop simulation

of the controller and linear plant model found in ‘controller.m.’

‘controller.m,’ calculates the regulator and estimator gains from Equations (3.29)

and (3.35) using MATLAB’s ‘lqr’ function. The MATLAB function ‘lsim’ simulates

the performance of the closed-loop, linearized system incorporating the LQG con-

troller dynamics in (3.38)–(3.39). Several design iterations were made by adjusting

the values of Ruu and Rvv before arriving at the final controller design. Initially, Ruu

was set to 10−2 and the Rvv matrix was populated with the sensor variances. For a

constant Ruu, if the value of Rvv is reduced and the estimator poles made faster, the

sensor noise in the system begins to greatly affect mispointing. If Rvv is increased and

59

the estimator poles made slower, the system states are poorly estimated resulting in

inaccurate feedback and poor pointing performance. The best system performance

results if the Rvv matrix contains the sensor variances. Finally, Ruu is adjusted until

acceptable antenna pointing performance and state estimation are achieved.

Controlled Linearized Plant Simulation Results

Figures 3-4–3-6 show the state response and estimated states for the antenna’s motion

about its pitch axis for a constant reference command of 0◦. Figures 3-4–3-6 are also

representative of the closed-loop performance of the controlled linear plant model in

the antenna’s yaw axis. The resulting open-loop pointing error components in either

the pitch or yaw antenna axes, shown in Figure 3-4, have a 3-σ value of approxi-

mately 0.06◦. Using the 3-σ values for component pointing errors in Equation (3.20),

the linear plant controller meets the 3-σ requirement for simulated open-loop pointing

accuracy of 0.1◦ outlined in Section 2.3. Figure 3-7 shows the motor torque required

to hold the antenna stationary while subject to base motion disturbance inputs. The

applied torques seen in Figure 3-7 do not exceed the maximum available motor torque

for the pedestal’s CMC motors [20]. Finally, Figure 3-8 displays the frequency re-

sponse Bode plot for the transfer function Y(s)/R(s). The closed-loop bandwidth

of the system may be identified from the Bode plot as the frequency at which the

magnitude plot crosses the -3dB point. Figure 3-8 shows that the system bandwidth

is approximately 2.5 Hz. Vibration tests conducted on the two-axis positioner used

for the “EHF SATCOM on the 707” project identified the first structural resonance

at a frequency greater than 30 Hz. Therefore, the 2.5 Hz bandwidth of the nominal

APS should not excite any structural modes in system. The closed-loop MATLAB

simulation in ‘controller.m’ simulates only the response of the linearized pedestal sys-

tem and does not provide enough insight into the true closed-loop behavior of the

pedestal system.

60

Figure 3-4: Actual and Estimated Pitch Component of Antenna Inertial Pointing
Error (Linear Plant)

Figure 3-5: Actual and Estimated Pitch Component of Antenna Inertial Velocity
(Linear Plant)

61

Figure 3-6: Actual and Estimated Base Motion Disturbance Input to the Antenna
Pitch Axis (Linear Plant)

Figure 3-7: Applied Motor Torque: Elevation Motor (Linear Plant)

62

Figure 3-8: Closed-Loop Frequency Response: Elevation Motor Controller (Linear
Plant)

3.2.6 Controlled Nonlinear Plant Simulation

In order to more accurately simulate the pointing performance of the LQG controller

developed in Section 3.2.5, a Simulink simulation is created. Simulink is a Graphi-

cal User Interface counterpart to MATLAB used to develop simulations of dynamic

systems. The Simulink simulation developed in this section incorporates the non-

linearities that are present in the pedestal’s dynamics, more accurately models sensor

limitations, and introduces actuator limitations such as torque-speed curves for the

servo-motors. Appendix B.2 contains the Simulink model for the nominal APS. The

same motor parameters and approximate moments of inertia used for the develop-

ment of the LQG controller are used in the Simulink simulation. The Simulink model

incorporates the non-linear pedestal system dynamics, presented in Equation (3.21),

that serve to couple the antenna roll and yaw EOMs and cause the applied torque in

the yaw axis to be dependent upon the cosine of the local elevation angle. The sim-

ulation also models sensor dynamics present in the measurement of inertial angular

displacements and velocities including sampling rates, sensor bandwidths, error vari-

ances, and extrapolation calculations. Linear torque-speed curves are developed using

the published no-load speeds and stall torques of the servo-motors and are incorpo-

rated for both the azimuth and elevation motors [20]. The torque speed curves limit

63

the amount of motor torque available to steer the antenna dish when the controller

commands torques that are not physically achievable, i.e. the torque-speed curves

allow for saturation of the pedestal’s actuators. The added dynamics incorporated in

the Simulink model more closely approximate the behavior of the controlled pedestal

system, and the simulation allows for modifications to the feedback controller that

could improve pointing performance.

The major issue that surfaces in the Simulink simulation concerns the effects of

the linearization of the moment side of Equation (3.21) about a 0◦ local elevation

operating point. The linearization has no effect on the pointing performance of the

antenna in the pitch axis, but pointing in the antenna’s yaw axis using the unmodified

azimuth motor controller developed in 3.2.5 is decidedly worse at elevation angles

greater than 60◦, a condition often experienced in flight. Figure 3-9 portrays the yaw

axis component of inertial pointing error under these conditions. For comparison, the

pointing errors encountered at low elevation angles are also displayed in Figure 3-9.

For the higher elevation angle scenario, pointing error nears 0.15◦ at some instances;

an unacceptable amount for the nominal APS.

Figure 3-9: Yaw Component of Antenna Pointing Error at Different Elevations (Un-
modified Controller)

In order to alleviate the problem, the azimuth motor controller output voltage

is gained by the secant of the elevation angle, a technique commonly employed in

64

two-axis pedestal control systems [4]. Gaining the commanded output voltage by

the secant of the local elevation angle eliminates the cosine term attached to the

armature circuit source voltage (eaaz) on the RHS of the yaw axis equation in (3.21).

The added gain ensures that the pointing error component in the antenna yaw axis

is minimized as elevation angles approach the keyhole region. At elevation angles

nearing 90◦, where the secant function approaches infinity, the azimuth motor cannot

command enough torque to keep the dish pointing at the target satellite and an

uncontrollable region is reached [9]. This condition is rarely reached for normal 707

flight profiles in the northern U.S. where the geostationary target satellites along the

equator are at lower elevations. Figure 3-10 illustrates yaw axis pointing error for

both the modified and unmodified azimuth motor controllers as the elevation angle

approaches the keyhole region.

Figure 3-10: Yaw Component of Antenna Pointing Error as Elevation Changes: Mod-
ified and Unmodified Controllers

Gaining the commanded output voltage for the azimuth motor by the secant of the

elevation angle does not eliminate the nonlinear and roll axis coupling terms in the

remainder of the moment side of the yaw axis EOM (3.21). These terms constitute the

back-emf damping torque present in the azimuth servo-motor. Because this back-emf

torque is small when compared to the torque caused by the armature circuit source

65

voltage, the linear plant model approximation used in the development of the LQG

controller becomes acceptable, and the modeling error can be accounted for to some

extent by the process noise added to the velocity state equation in the linear plant

model (3.22) [27].

Controlled Nonlinear Plant Simulation Results

Figures 3-11–3-16 show the Simulink simulation outputs of the antenna state variables

and their estimates for the controlled pedestal operating in normal environments, or

elevation angles outside the keyhole region. Of most interest to the reader is that

the behavior of the pointing error components in the Simulink model (Figures 3-

11 and 3-12) is nearly identical to the behavior of the pointing error components

predicted by the linear system model (Figure 3-4). The 3-σ error values for the

pointing error components are again found to be approximately 0.06◦ which meets

the overall, simulated open-loop pointing requirement from Section 2.3 (3.20). The

inertial velocities and base motion disturbances from the Simulink model, Figures 3-

13–3-16, also exhibit behaviors very similar to their counterparts in the linear system

model, Figures 3-5–3-6. Figures 3-17 and 3-18 show the step response for the antenna

pitch and yaw axes, respectively. The rise time observed in these figures, which will

play an important role in the antenna dithering scheme developed for the closed-loop

pointing algorithms in the next chapter, is approximately 0.25 seconds. Finally, the

commanded and applied motor torques for a step input in the antenna’s yaw axis

occurring at 1 second are shown in Figure 3-19. The limitation on the applied torque

in Figure 3-19 shows the effects of modeling the linear torque-speed curve in the

simulation.

Antenna Inertial Displacement Measurements and Reference Commands

The purpose of this section is to highlight the underlying calculations involved in

measuring the inertial displacement states of the antenna, and calculating and issu-

ing reference commands, that are not obvious or explicit in the Simulink simulation.

These calculations must be accomplished by the pedestal control computer in a real

66

Figure 3-11: Actual and Estimated Pitch Component of Antenna Inertial Pointing
Error (Simulink Simulation)

Figure 3-12: Actual and Estimated Yaw Component of Antenna Inertial Pointing
Error (Simulink Simulation)

67

Figure 3-13: Actual and Estimated Pitch Component of Antenna Inertial Velocity
(Simulink Simulation)

Figure 3-14: Actual and Estimated Yaw Component of Antenna Inertial Velocity
(Simulink Simulation)

68

Figure 3-15: Actual and Estimated Base Motion Disturbance Input to the Antenna
Pitch Axis (Simulink Simulation)

Figure 3-16: Actual and Estimated Base Motion Disturbance Input to the Antenna
Yaw Axis (Simulink Simulation)

69

Figure 3-17: Antenna Pitch Axis Inertial Angular Displacement Step Response
(Simulink Simulation)

Figure 3-18: Antenna Yaw Axis Inertial Angular Displacement Step Response
(Simulink Simulation)

70

Figure 3-19: Antenna Yaw Axis Commanded and Applied Torques for a Step Re-
sponse

APS. The pitch and yaw inertial displacement states of the antenna away from the

desired pointing vector are calculated using a combination of local resolver measure-

ments and IMU position measurements (aircraft Euler angles). When measuring these

displacement states, q and r, the desired local azimuth and elevation look angles, azd

and eld, from Appendix A are needed, a calculation that involves IMU measurement

data. From the antenna’s actual local position, as measured by the resolvers, a point-

ing vector in the Aircraft coordinate frame may be calculated as follows:
x

y

z

Aircraft

=

cos(el) cos(az)

cos(el) sin(az)

− sin(el)

 (3.40)

where az and el are the measured local position angles. Equation (3.41) trans-

forms the pointing vector from Equation (3.40) through the desired local azimuth

and elevation angles into a “Desired Antenna Body Coordinate Frame” as follows:

71

x

y

z

DesiredBody

=

cos(eld) 0 − sin(eld)

0 1 0

sin(eld) 0 cos(eld)

·

cos(azd) sin(azd) 0

− sin(azd) cos(azd) 0

0 0 1

x

y

z

Aircraft

(3.41)

Finally, the angular displacement in the pitch axis, q, is found by determining the

elevation of the pointing vector resolved in the Desired Body Coordinate Frame ac-

cording to Equation (A.2). The yaw displacement, r, is found by determining the

azimuth according to Equation (A.1). Reference commands are made simply by

changing the azd and eld values, pursuant to changes in the inertial pointing vector

from the terminal to a different spot in inertial space. The inertial pointing vector

changes when the target satellite changes or when the antenna is slewed or dithered.

Because the C-MIGITS IMU used with the nominal APS only updates the aircraft

Euler angles at 10 Hz, large errors in antenna inertial displacement state measure-

ments could result because of inaccuracies in the azd and eld values used in Equation

(3.41). To solve this problem, the values of azd and eld may be upsampled using

velocity extrapolation according to:

azd = az10Hz + ȧz10Hz∆t (3.42)

eld = el10Hz + ėl10Hz∆t (3.43)

where az10Hz, ȧz10Hz, el10Hz, and ėl10Hz are calculated according to one of the methods

presented in Appendix A using the 10 Hz C-MIGITS Euler angle and rate data. ∆t

in Equations (3.42)-(3.43) is the time difference between the last C-MIGITS data

set update and the instance in time when the upsampled values of azd and eld are

calculated. Because the C-MIGITS IMU updates at 10 Hz, ∆t never exceeds 0.1

seconds.

72

3.3 Pointing Error Distributions

In order to facilitate simulation of the performance of closed-loop pointing control

algorithms developed in the next chapter, an understanding of the statistical distri-

butions of the pitch and yaw components of pointing error must be developed. To

obtain data for modeling the distributions of q and r, the Simulink simulation from

Section 3.2.6 is run for 30 seconds and the pointing error components recorded at

evenly spaced time samples of 0.001 seconds (Figure 3-20). These points were then

used to construct auto-correlation functions to determine the time-scale at which the

pointing error distributions exhibit dependencies. The auto correlation functions are

plotted in Figures 3-21 and 3-22. Figures 3-21 and 3-22 show that the initial peaks of

the auto-correlation functions of the error components fall off at approximately 0.25

seconds. Thus, if the distributions of pointing error components prove to be normal,

every 0.25 seconds a pointing error component may be obtained that is nearly inde-

pendent of past pointing errors, assuming they occurred at 0.25 second intervals as

well [32].

After the correlation time is determined, the simulation is run again for 250 sec-

onds to record 1000 approximately independent samples of both the q and r pointing

error components. In an effort to compare the resulting samples to normal distribu-

tion curves, histograms are made of the data sets and plotted together with normal

distribution curves calculated from the sample means and variances. Figures 3-23 and

3-24 visually indicate the normalcy of the data; however, a statistical goodness-of-fit

test is required in order to be convinced that a normal approximation to the distri-

butions of the pointing error components accurately represents the true distributions

most of the time.

The Kolmogorov-Smirnoff goodness-of-fit test for normal distributions is applied

to the data sets of length 1000 where the population mean and variance are estimated

by the sample mean and variance [33]. The Kolmogorov-Smirnoff test weighs the null

hypothesis (H0), that claims the sample data has a normal distribution, against the

alternate hypothesis (Ha) that states the data is not from a normal distribution. αKS

73

Figure 3-20: Pitch (q) and Yaw (r) Components of Antenna Pointing Error

Figure 3-21: q Auto-correlation Function

74

Figure 3-22: r Auto-correlation Function

Figure 3-23: q Histogram

75

Figure 3-24: r Histogram

represents the probability of type-1 error, occurring when Ha is accepted over H0

when H0 is actually true. The value of αKS determines the critical value for the test.

If the value of the test statistic exceeds the critical value, then the null hypothesis

is rejected at the αKS significance level, and the data may be determined not to

come from a normal population distribution. The results of the Kolmogorov-Smirnoff

goodness-of-fit test for the q and r components of pointing error are summarized in

Table 3.1 along with the sample statistics for mean and variance.

Table 3.1: Kolmogorov-Smirnoff Test for Pitch Error Component

αKS Critical Value Test Stat. Hypothesis Accepted x̄ S2

q 0.05 0.895 0.512 H0 -0.006 0.0036
r 0.05 0.895 0.601 H0 -0.003 0.0037

The results of the Kolmogorov-Smirnoff test uphold the null hypothesis claiming

that the pointing error components have normal distributions; therefore, the distri-

butions of pointing error components may be modeled as normal with means and

variances equal to the sample means and variances from Table 3.1. The ability to

76

approximate the pointing error components as normally distributed assists in the

modeling and simulation of closed-loop step-tracking algorithms developed in the

next chapter.

77

78

Chapter 4

Closed-Loop Pointing Strategy

Overview

Because the nominal APS defined in Section 2.3 attempts to minimize inertial mis-

pointing with the simplest available system, step-tracking is the closed-loop strategy

that will be implemented with the nominal APS and open-loop feedback controller

developed in the previous chapter. The resulting pointing strategy is classified as

hybrid open/closed-loop in the sense that the closed-loop step-tracking algorithm up-

dates the reference commands to the open-loop pedestal controller. The antenna’s

gain pattern will be defined as a nonlinear, scalar cost function that the step-tracking

algorithms developed in this chapter must optimize. Step-tracking algorithms accom-

plish both spatial pull-in and closed-loop tracking by optimizing the antenna’s gain

pattern.

Five step-tracking algorithms will be tested through simulation in terms of how

well each algorithm accomplishes spatial pull-in with various initial pointing errors.

Next, selected step-tracking algorithms will be tested through simulation under con-

ditions simulating harsher inertial open-loop pointing error and satellite motion. Fi-

nally, the best performing algorithm in the simulated spatial pull-in tests will undergo

simulated closed-loop tracking tests of a target satellite. The results of each of the

simulations will be used to gauge the feasibility of using step-tracking algorithms as

a closed-loop pointing strategy for an airborne EHF SATCOM application.

79

4.1 Defining the Cost Function

The feedback metric used in a closed-loop RF SATCOM application is the received

Signal to Noise Ratio (SNR) from the satellite. Because the antenna’s gain determines

the power of the signal measurement in the SNR metric, the antenna’s gain pattern

represents how signal power varies as the antenna moves off boresight. The gain

pattern, measured in decibels, represents the actual SNR if an arbitrary noise floor

value is subtracted from the gain values. For simulation purposes, the noise power

is set to one; thus, the unmodified gain pattern models how the SNR changes as a

function of pointing error.

Pointing error may be broken into two orthogonal, inertial angular components,

cross-elevation (xeli) and elevation (eli), where the subscript i denotes inertial space.

If a stationary antenna with a level base is pointed at the target satellite, cross-

elevation corresponds to rotation about the dish’s yaw axis, and elevation corresponds

to rotations about the dish’s pitch axis as in Figure 4-1. The inertial cross-elevation

and elevation angles differ from r and q only by the roll angle, p, of the antenna. An

equation similar to (3.20) may be defined for the total pointing error in terms of xeli

and eli:

∆ =
√
el2i + xel2i (4.1)

The xeli and eli angles provide the orthogonal coordinate system for the gain

pattern which becomes a nonlinear function of the two pointing error components.

For the development of step-tracking algorithms, the gain pattern serves as the cost

function that the engineer must optimize. Optimization of the cost function corre-

sponds to finding the inertial xeli and eli coordinates of the location of maximum

antenna gain. Because cost functions are always minimized, and available optimiza-

tion literature deals almost exclusively with minimization problems, the gain pattern

is multiplied by -1 to form the true cost function from which the global minimum,

corresponding to the antenna pointing on boresight, is sought. The global minimum

is the unique minimum of the function, whereas local minima consist of other points

80

Figure 4-1: X-El, El Coordinates with respect to Dish for Stationary, Level Antenna
Base. Photo Courtesy of Gawronski and Craparo [19].

Figure 4-2: Antenna Gain Pattern Cost Function

81

where the cost function increases locally but then decreases again near the global min-

imum [34]. A weak minimum is defined as a local minimum where the function value

remains constant in some directions but increases in others. The cost function in-

creases in all directions near a strong minimum. The same terms may also be applied

to any maxima in the cost function. Figure 4-2 shows the gain pattern cost function

for the 24 in. dish used in the nominal APS with boresight, or the global minimum,

located at the origin. Figure 4-2 is simply the negative of Figure 2-3. In Figure 4-2,

one may identify several weak, local minima corresponding to the antenna’s sidelobes.

Weak, local maxima are also present in the cost function and correspond to the nulls

in the antenna pattern.

Step-tracking algorithms move from trial point to trial point until the algorithm

locates the global minimum of the cost function. A unique set of xeli, eli coordinates

defines the location of each trial point. In order for a step-tracking algorithm to

evaluate the cost function at different trial points, the desired xeli and eli angles must

be issued to the open-loop controller as reference commands (Section 3.2.6). Although

the xeli and eli angles differ from the r and q antenna angles only by p, no direct

means of measuring the antenna roll angle exists for the nominal APS and another,

somewhat more cumbersome, approach must be used. First, an initial pointing vector

from the terminal to the target satellite must be calculated as in Appendix A. All

subsequent inertial xeli and eli angles will be referenced as orthogonal angles away

from the initial pointing vector. Desired xeli and eli angles are translated into the

local desired look angles, azd and eld, using the following intermediate relationship:
x

y

z

NED

=

cos(azNED) − sin(azNED) 0

sin(azNED) cos(azNED) 0

0 0 1

·

cos(elNED) 0 sin(elNED)

0 1 0

− sin(elNED) 0 cos(elNED)

cos(eli) cos(xeli)

cos(eli) sin(xeli)

− sin(eli)

 (4.2)

82

where azNED and elNED are the inertial look angles in the North, East, Down Co-

ordinate Frame (Appendix A). Equation (4.2) develops a pointing vector in the

topocentric North, East, Down inertial frame from which the local desired look an-

gles, azd and eld, are calculated from Equations (A.1), (A.2), and (A.11). Reference

commands from a closed-loop step-tracking algorithm may now be issued to the open-

loop pedestal controller forming the hybrid open/closed-loop pointing strategy.

4.2 Facets of the Optimization Problem

Several issues arise when one applies step-tracking algorithms as a closed-loop an-

tenna pointing solution for a mobile SATCOM application. First, only the function

values of the cost function in Figure 4-2 may be obtained by measuring the SNR as the

antenna points at a particular xeli, eli coordinate. Any gradient or second-derivative

measurements of the cost function must be approximated using finite differencing.

Thus, optimization methods requiring cost function derivatives at a particular trial

point mandate cost function evaluations at additional surrounding trial points, and

the algorithm becomes more computationally expensive. Secondly, in real SATCOM

terminal systems, the SNR measurement may only be meaningfully computed to a

resolution of approximately 0.1 dB. This limitation has significant implications for

selecting an appropriate finite differencing interval and restricts the obtainable accu-

racy of cost function optimization. Thirdly, the cost function possesses multiple weak

maxima and minima, corresponding to sidelobes and nulls present in the antenna gain

pattern, that make the optimization difficult as these points must be distinguished

from the global minimum. Fourthly, the pointing error from the open-loop pedestal

controller and the noise within the terminal system make SNR measurements, and

therefore the cost function, stochastic. At each trial point visited, the stare time

must be made long enough to average the effects of both of these noise sources [11].

Stare time is the time spent averaging the SNR measurements at each inertial xeli, eli

coordinate that the step-tracking algorithm visits. Although terminal system noise

contributes to the required stare time, all closed-loop pointing strategies must in-

83

corporate stare times for obtaining accurate SNR measurements in the presence of

system noise. Therefore, the effects of terminal system noise are not incorporated

in the spatial pull-in and tracking simulations discussed in this chapter because the

presence of system noise neither adds to nor detracts from the feasibility of using

step-tracking algorithms for mobile SATCOM applications. Lastly, due to the mo-

tion of the aircraft and slowly time varying sources of error identified in Section 2.2.1,

the satellite appears as a slowly moving target in inertial space, and the cost function

develops time dependencies as well. Step-tracking algorithms must account for the

apparent motion of the satellite during both the spatial pull-in stage and the tracking

stage and must be robust enough to optimize a slowly time varying, stochastic cost

function. Step-tracking systems must deal with all of these issues accordingly in order

to successfully accomplish closed-loop antenna pointing.

Step-tracking algorithms must optimize the gain pattern cost function while min-

imizing the computational expense incurred by the algorithm. In step-tracking algo-

rithms, excessive SNR measurements add to the computational expense metric and

detract from the convergence time, or the time it takes the step-tracking algorithm

to locate the minimum of the cost function. SNR measurements, or cost function

evaluations, are much more computationally expensive than the overhead of the step-

tracking algorithm, particularly when the number of independent variables that define

the cost function is small [34]. Consequently, overhead times will be ignored in the

performance comparisons of step-tracking algorithms developed in this chapter as the

gain pattern cost function is defined by only two independent variables.

4.3 Step-tracking Using Function Comparison Meth-

ods

4.3.1 Full-field Search

A full-field function comparison search constitutes the simplest method of step-

tracking. Function comparison methods work by measuring the cost function at

84

every location of interest in an uncertainty field and subsequently selecting the trial

point that has the lowest function value as the location of the optimal solution within

the field. Step-tracking algorithms employing a full-field search simply extend the

uncertainty field, within the context of open-loop pointing errors, to cover an entire

region where the boresight location might lie. Despite the simplicity of the approach,

full-field searches provide limited usefulness in developing step-tracking algorithms for

mobile SATCOM terminal systems. Because many antennas used in mobile SATCOM

applications have stringent closed-loop inertial pointing requirements, a large number

of trial points is needed to span the entire field of initial pointing error uncertainty

during the spatial pull-in stage. For instance, with a 3◦ x 3◦ field of uncertainty, if

pointing error from boresight is limited to 0.1◦, at least 900 trial points are required

(Figure 4-3).

The gain pattern cost function must be evaluated at least once at every trial point

within the uncertainty field in order to effectively distinguish the location of boresight

from the surrounding sidelobes. Such a large number of required SNR measurements

lead to a computationally expensive and inefficient approach to step-tracking. Figure

4-3 illustrates that without overlap in the search pattern the boresight location could

potentially lie in-between the 0.1◦ search rings. Lengthy, full-field searches are also

very susceptible to errors caused by the time-varying property of the cost function due

to satellite motion. For this reason, full-field search approaches cannot be used for

the tracking stage of a closed-loop pointing strategy. Clearly, mobile SATCOM ap-

plications requiring closed-loop pointing necessitate better step-tracking approaches

than full-field searches.

4.3.2 Spiral Search

A function comparison step-tracking approach used in SATCOM applications with

high gain antennas is the Spiral Search (SS) method. The SS method accomplishes

spatial pull-in by obtaining SNR measurements at specified locations surrounding

the initial pointing vector that form a spiral ring pattern, as shown in Figure 4-4.

After all of the trial points are visited, the algorithm steps to the location coincident

85

Figure 4-3: Full-Field Search Example

Figure 4-4: Spiral Search Pattern

86

with the lowest cost function value, and the test points are regenerated according to

the same pattern. Old cost function measurements are not recycled because of the

stochastic and time-varying properties of the gain pattern cost function even though

some of the coordinates from previous iterations may coincide with the new trial

point locations. Once the algorithm measures higher cost function values at each

of the trial points surrounding the center point, the radius from the center point

to the surrounding test points is reduced by half and the algorithm repeats. The

SS algorithm terminates when the search radius is reduced to a sufficiently small

value such that cost function measurements at the different trial points are not easily

distinguished from one another.

Figure 4-5: Cost Function as a Function of xeli (eli = 0◦)

The initial search radius equals the HPBW of the antenna. To help understand

why the HPBW is used as an initial radius, a cut across one angular dimension

of the gain pattern cost function is plotted in Figure 4-5. For a random initial

starting distance from boresight, if the cost function is evaluated at HPBW intervals,

increasing cost function values will not be observed in both directions until boresight

is crossed. When this condition occurs, the HPBW scan terminates, and the trial

point with the lowest cost function value lies within half of a HPBW from boresight

of the cost function. The concept of scanning in HPBW intervals to eventually arrive

within half the HPBW of boresight does not directly carry over to a gain pattern

87

cost function defined by two independent variables (xeli and eli); however, a spiral

search method with an initial radius equal to a HPBW does locate the mainlobe of

the gain pattern cost function a large percentage of the time. The SS step-tracking

algorithm typically converges on boresight quickly, for cases when it does converge.

The same SS algorithm used for spatial pull-in cannot be used for tracking because

the first few spiral search radii are large, and the process would dither the antenna

an unacceptable distance away from boresight. The non-convergence issues inherent

in the SS method may also make it a less attractive option for accomplishing spatial

pull-in. Because of the pitfalls inherent in the SS step-tracking algorithm, a more

robust method is desired which may also be used for closed-loop tracking.

4.4 Step-tracking Using Optimization Techniques

By applying nonlinear function optimization methods to the gain pattern cost func-

tion, one may develop reliable step-tracking methods capable of accomplishing both

spatial pull-in and closed-loop tracking. Optimization methods for nonlinear functions

are iterative algorithms that move from trial point to trial point in the n-dimensional

space spanned by the cost function until the termination conditions for the algorithm

are met (if termination conditions exist). If the cost function is a function of n inde-

pendent variables, then x is a size-n position vector specifying the location in n-space

of the trial point. For step-tracking algorithms using optimization methods, x is a

2x1 vector containing the xeli and eli orthogonal inertial pointing angles. In general,

optimization methods must satisfy

Fk+1 ≤ Fk (4.3)

where Fk is the cost function evaluated at the k-th iteration of the algorithm [34].

Equation (4.3) ensures that each iteration of the optimization algorithm produces a

successively smaller value of the cost function. Nonlinear cost function optimization

88

algorithms follow the update formula

xk+1 = xk + αpk (4.4)

where xk+1 is the next trial point location where the cost function is to be evaluated,

xk is the current location, pk is a descent direction, and α is the step length taken in

the descent direction [34–36]. Descent directions must follow a direction of negative

curvature in the cost function, meeting the stipulation

pTkGkpk ≤ 0 (4.5)

where Gk is the second-derivative Hessian matrix of the cost function at the k-th trial

point [34–36]. The specific optimization approach applied determines the descent

direction in Equation (4.4). The value of α in Equation (4.4) specifies how far the

algorithm should travel along the descent direction and is determined by a linear

search procedure.

The terminal conditions for optimization methods must be carefully defined for

the specific application. For step-tracking applications accomplishing spatial pull-in,

the algorithm must locate the global minimum corresponding to the inertial angular

coordinates of boresight. At boresight, or the peak of the mainlobe of the gain pattern,

the gradient of the cost function vanishes; however, the gradient is also equal to zero at

the weak minimums of the cost function where the sidelobes in the gain pattern occur.

To effectively accomplish spatial pull-in, the algorithm must not terminate until the

gradient is sufficiently close to zero and the minimum has been determined to be a

strong one. Although the gain pattern cost function contains weak maxima, where the

nulls in the gain pattern occur, the gradient values at these points cannot be precisely

calculated because of the sharpness of the cost function at the nulls. As such, the

weak maxima in the cost function do not have zero gradient values and do not pose

potential termination points for step-tracking algorithms accomplishing spatial pull-

in. Step-tracking systems may accomplish closed-loop tracking by eliminating the

terminal conditions imposed in the spatial pull-in stage and running the optimization

89

algorithm in an infinite loop. Tracking may also be accomplished by scheduling the

same algorithm used in the spatial pull-in stage to run at regular intervals or at times

when the strength of the SATCOM link has been sufficiently degraded.

Optimization methods applied to nonlinear cost functions seek to achieve the

highest possible asymptotic rate of convergence. An optimization algorithm asymp-

totically converges on the desired solution with order o, where o is the largest number

such that

0 ≤ lim
k→∞

||xk+1 − x∗||
||xk − x∗||o

≤ ∞ (4.6)

where x∗ is the global minimum of the cost function. In practice, the best convergence

rate that is generally attainable is quadratic convergence, where o in (4.6) equals two,

so optimization literature emphasizes methods that exhibit this property [34,36].

4.4.1 Modified Newton’s Method

The first optimization method applied to the development of step-tracking algorithms

is a Modified Newton’s (MN) method. The precepts behind Newton’s method stem

from optimization techniques applied to quadratic cost functions. A generic quadratic

cost function may be written as

F (x) =
1

2
xTAx + bTx + c (4.7)

where A must be a symmetric matrix [34]. The gradient and second-derivatives of

the function in (4.7) may be calculated using Equations (4.8) and (4.9).

g(x) = Ax + b (4.8)

G(x) = A (4.9)

In Equations (4.8) and (4.9), g is the gradient vector and G is the second-derivative

Hessian matrix. For a quadratic cost function, the exact Taylor series expansion of

90

the gradient at the next trial point, xk+1, may be written as

gk+1 = gk +Gpk (4.10)

where all higher derivatives are zero for quadratic cost functions [34]. If xk+1 is to

be the minimum of the quadratic cost function, Equation (4.10) must equal zero.

Newton’s method algorithms subsequently determine a descent direction for use in

Equation (4.4) according to

pk = −G−1gk (4.11)

where gk is the cost function gradient at the current trial point and G is the Hessian

matrix of the assumed quadratic cost function [34–36]. Equation (4.11) exactly de-

termines the minimum of a quadratic function in a single iteration. On non-quadratic

functions, the process repeats iteratively until the minimum is found according to

pk = −G−1
k gk (4.12)

where Gk is now the Hessian matrix at the given trial point.

Newton’s method generally exhibits quadratic convergence rates making it a viable

approach for minimizing nonlinear cost functions [36]. Difficulties with the approach

in (4.12) arise when Gk is not positive definite and actual descent directions are not

generated; i.e. the pk vector generated by (4.12) does not satisfy (4.5). Modified

Newton’s Methods solve this problem by altering the Hessian matrix, Gk, to ensure

that it is as close to the original Gk matrix as possible, yet sufficiently positive defi-

nite. One of the best approaches to modifying the Gk matrix employs the Cholesky

Factorization described in Equations (4.13)-(4.14) [34–36].

91

Gk = LkDkL
T
k (4.13)

djj = gjj −
j−1∑
q=1

dqql
2
jq (4.14)

lij = (gij −
j−1∑
q=1

dqqliqljq)/djj i = j + 1, j + 2, . . . , n (4.15)

where gij, lij, and dij are the elements of Gk, Lk, and Dk respectively and j =

1, 2, . . . , n. If Gk is positive definite, then the diagonal Dk matrix in (4.13) will have

positive entries. If any of the elements of the Dk matrix are less than an arbitrarily

small positive number, δG, then Gk is replaced by Ḡk given by

Ḡk = L̄kD̄kL̄
T
k (4.16)

d̄jj = gjj + rjj −
j−1∑
q=1

d̄qq l̄
2
jq = δG (4.17)

l̄ij = (gij −
j−1∑
q=1

d̄qq l̄iq l̄jq)/d̄jj i = j + 1, j + 2, . . . , n (4.18)

(4.19)

where rjj is the amount added to the diagonal values of D to ensure they are greater

than or equal to δG and j again increments column-wise from 1 to n [34]. Ḡk becomes

the modified approximation to the Hessian matrix at the given trial point and is

related to the original approximation by Ḡk = Gk + Rk where Rk is a diagonal

matrix containing the rjj values. Because Ḡk is sufficiently positive definite, a descent

direction that satisfies (4.5) may now be found by solving Equation (4.20).

pk = −Ḡ−1gk (4.20)

The value of δG places a lower limit on the “positive definiteness” requirement of Ḡk.

The δG value is rarely equal to zero to account for errors in the computation and/or

approximation of the Hessian matrix. A selection of δG = 10 is used in the modified

Newton step-tracking simulations developed in this chapter with good results.

92

4.4.2 Quasi-Newton’s Methods

Quasi-Newton methods attempt to optimize nonlinear cost functions without the use

of second-derivatives while maintaining quadratic convergence rates. Quasi-Newton

Methods determine the descent direction according to:

Bkpk = −gk (4.21)

Bk+1 = Bk +Qk (4.22)

where Bk in some way approximates Gk from (4.12), and Qk is an update matrix de-

pendent upon xk, xk+1, gk, and gk+1 [34–36]. In the absence of additional knowledge

about the cost function, B0 may be initialized to the identity matrix [34, 36]. Bk+1

must also satisfy the quasi-Newton Condition that ρkBk+1∆xk = ∆gk [35]. The value

of the constant, ρk, is normally set to unity which forces the Bk+1 matrix to have

the same curvature information as the second-derivative matrix in the pk direction

for quadratic cost functions [34]. As the quasi-Newton algorithm iterates, and a cost

function minima is neared, Bk becomes a successively better approximation to Gk.

Two separate methods for calculating the update matrix, Qk, in Equation (4.22)

are applied to developing step-tracking algorithms in this chapter; the method of

Davidon, Fletcher, and Powell (DFP) and the method of Broyden, Fletcher, Gold-

farb, and Shano (BFGS). The formula for the DFP and BFGS update matrices are

presented in Equations (4.23) and (4.24), respectively.

Qk = α
gk∆gTk

∆gTk∆xk
+ α

∆gkg
T
k

∆gTk∆xk
− α∆gkg

T
k∆xk∆gTk

(∆gTk∆xk)2
+

∆gk∆gTk
∆gTk∆xk

(4.23)

Qk =
∆gk∆gTk
∆gTk∆xk

+ α
gkg

T
k

∆xTk gk
(4.24)

For derivations of the update formula in Equations (4.23)–(4.24), the reader is referred

to the literature [34–36]. In general, the BFGS method is purported to have much

better performance optimizing nonlinear functions than the DFP method [34], but

step-tracking algorithms using both methods will be developed and applied in this

chapter for comparison.

93

As in the modified Newton’s method, quasi-Newton’s methods only generate de-

scent directions when the Bk matrix in (4.21) is positive definite. The update formula

for both the DFP and BFGS methods are theoretically structured such that Bk re-

mains positive definite at each iteration of the optimization algorithm [34, 35]. In

spite of theoretical guarantees, Bk often tends to lose positive definiteness due to

rounding errors, particularly when cost function gradients are approximated using

finite differencing techniques (as is the case in step-tracking algorithms). To ensure

Bk remains positive definite, the step-tracking algorithms developed in this chapter

incorporate the same procedure outlined in Equations (4.16)-(4.18) for developing a

sufficiently positive definite version of Bk when necessary. The resulting B̄k matrix,

similar to Ḡk in (4.16), is used to determine a descent direction according to (4.21)

where Bk is replaced by B̄k.

4.4.3 Method of Steepest Descent

The simplest optimization method to develop step-tracking algorithms in this chapter

is the method of Steepest Descent (SD). The SD method simply sets the descent

direction equal to the negative of the cost function gradient at the current trial point

according to Equation (4.25).

pk = −gk (4.25)

Steepest Descent algorithms rely more heavily on accurate linear searches to deter-

mine the step length in Equation (4.4) than the Newton methods do. Accurate linear

searches greatly increase the number of cost function evaluations accomplished per

major algorithm iteration; an effect that is generally undesirable for applications re-

quiring quick convergence. Steepest Descent methods exhibit only linear convergence

rates but are very stable and less complex than other optimization techniques [34].

Because of the radial nature of the gain pattern cost function, SD optimization al-

gorithms should produce descent directions which are tangent to the contours of the

cost function; thus, boresight of the cost function could theoretically be found in one

major algorithm iteration if the correct step length is determined. Because of the

94

potential for SD methods to easily optimize the gain pattern cost function without

the use of second-derivative approximations, a step-tracking algorithm using an SD

technique is developed in this chapter for comparison to the Newton methods.

4.4.4 Step-tracking Algorithm Architecture

The basic architecture described below produces step-tracking algorithms that accom-

plish closed-loop spatial pull-in of a target satellite using the methods of optimization

described in Sections 4.4.1–4.4.3. This architecture changes very little as a function of

optimization method. Major differences in step-tracking algorithms using optimiza-

tion techniques arise only in the approach used by each method to calculate pk in

Equation (4.4) (Line 24 of Algorithm 1).

Lines 1-3 initialize the terminal conditions, begin the while loop, and initialize the

logical variable that determines whether or not a descent direction and step-length are

calculated for this iteration (a predetermined αpk is calculated when the algorithm

is at a local minima; Lines 8,14). Line 4 computes the value of the cost function at

x as well as at any nearby points required to approximate first or second-derivatives

of the cost function. Lines 5-17 determine what procedures are accomplished by

the algorithm when a minimum has been reached. If the algorithm determines it is

currently at a local, weak minimum, Lines 6-10 instruct the algorithm to jump off of

the local minimum in the direction of the global minimum. If the algorithm thinks

it may have located the global minimum, lines 11-17 instruct the algorithm to repeat

itself, without changing the trial point location, a number of times equal to “mincheck

threshold” to make sure that the global minimum has actually been found; then the

terminal conditions are set to true. The stochastic nature of the cost function makes

this process necessary.

In the event that the repeated trial point is no longer close enough to the global

minimum, lines 18-20 reset to zero the number of times the algorithm has repeated

itself and instructs the algorithm to calculate αpk. This event can be thought of

as “falling off” of the global minimum, due to the time-varying nature of the cost

function. This can occur in the amount of time it takes the algorithm to repeat

95

Algorithm 1 Step-Tracking Algorithm using Function Optimization Methods

1: set terminate = false
2: while terminate == false do
3: set compute αpk = true
4: perform function/gradient evaluations at xk
5: if criteria for minimum == true (small gradient) then
6: check for local min
7: if local min == true then
8: αpk = jump condition αpk
9: mincheck = 0

10: else
11: αpk = 0
12: mincheck = mincheck +1
13: end if
14: compute αpk = false
15: if mincheck > mincheck threshold then
16: terminate=true
17: end if
18: else if mincheck > 0 && criteria for minimum ==false then
19: mincheck = 0
20: compute αpk = true
21: end if
22:
23: if compute αpk == true then
24: compute pk and initial α
25: limit αpk to a predetermined region of confidence
26: perform linear search along pk to determine satisfactory α
27: end if
28: xk+1 = xk + αpk
29: end while

96

itself to check if it is on the global minimum or not. Experience has shown that

the algorithm should only repeat itself once or twice at a single trial point while

checking the global minimum terminal conditions in order to avoid “falling off” the

global minimum during this time. Lines 23-27 determine a descent direction and a

step length and are only accomplished if the algorithm is not at a minima. Line

25 limits the initial step length to within some “region of confidence.” This step is

accomplished because many of the algorithms calculate very large initial step lengths

away from the current trial point when smaller ones are required. Finally, Line 28

determines the next trial point according to (4.4).

The step-tracking algorithms developed to accomplish spatial pull-in may be modi-

fied for use in closed-loop tracking by simply removing the terminal conditions. Track-

ing algorithms also do not require the weak versus strong minimum discrimination

procedure in Lines 5-21 because the strong minimum of the gain pattern cost function

has already been located in the spatial pull-in stage.

Finite Difference Approximations for First and Second-Derivatives

Line 4 in Algorithm 1 instructs the step-tracking method to approximate the required

first and second cost function derivatives. A standardized map of cost function eval-

uation locations relative to the current trial point, xk, is followed in each of the four

nonlinear optimization methods when gradients or second-derivatives must be approx-

imated. Figure 4-6 shows the cost function evaluation locations where the current

trial point is labeled point 1 and δf is the finite differencing interval chosen. Because

xeli together with eli and r together with q represent orthogonal components of iner-

tial pointing error, the pointing error distributions derived for r and q in Section 3.3

are applied as distribution models for xeli and eli. Consequently, the 3-σ value for the

open loop pointing error in the eli and xeli component directions is 0.06◦ (Sections

3.2.5 and 3.2.6). The finite differencing interval for each of the nonlinear optimiza-

tion algorithms is selected to be between 2-3 times larger than the 3-σ value for the

open-loop pointing error components in order to sufficiently distinguish cost function

values measured at different points on the function map in Figure 4-6 [36]. The finite

97

differencing interval must also balance the requirement that Taylor series truncation

errors be kept small; a stipulation which places an upper bound on δf [34–36]. A δf

value equal to 0.16◦ was found to meet the above criteria and produce acceptable first

and second-derivative approximations in simulation.

Figure 4-6: Cost Function Finite Differencing Map

The optimization algorithms utilize forward difference techniques to approximate

gradient values if the algorithm is not in the vicinity of a minimum (Equation (4.26)).

Forward difference techniques require less function evaluations per trial point than

central difference methods but are less accurate at approximating the gradient, espe-

cially near a minimum of the cost function. For this reason, once the gradient values

of the cost function fall below ten times the threshold for a cost function minimum,

the algorithms switch to approximating gradient values by using central difference

techniques (Equation (4.27)). The second-derivative Hessian matrix is always cal-

culated using a forward difference approximation because the tradeoff in accuracy

with a central difference Hessian calculation is not worth the computational price,

98

(4.28) [35]. Equation (4.29) ensures the approximation to the Hessian matrix satisfies

the symmetry property of second-derivative matrices [34–36].

gj(x) ≈ F (x + δfej)− F (x)

δf
(4.26)

gj(x) ≈ F (x + δfej)− F (x− δfej)
2δf

(4.27)

G̃j =
g(x + δfej)− g(x)

δf
(4.28)

G ≈ 1

2
(G̃ + G̃

T
) (4.29)

The subscript j in Equations (4.26)-(4.27) represents the j-th element of g while ej

represents the unit vector in the j-th direction. In Equation (4.28) the subscript j

represents the j-th column of the Hessian matrix approximation, G̃.

Minimum Discrimination

Lines 5-17 of Algorithm 1 check to see if the step-tracking algorithm has reached a

cost function minima and also determine whether or not that minima is the global

minimum. Each of the four nonlinear optimization algorithms use the same strategy

to move away from a weak, local minimum and to travel in the direction of the global

minimum. If the gradient is sufficiently small and the algorithm believes it has reached

a minimum, then the algorithm carries out the function evaluations necessary to

approximate the second-derivative Hessian matrix of the cost function at the current

trial point according to Equation (4.28). If the algorithm is at a weak minimum,

the approximation to the Hessian matrix should be nearly positive semi-definite.

At the strong minimum, the approximate Hessian matrix should be strongly positive

definite because the cost function has sufficient concavity in all directions. As a test for

positive definiteness in the Hessian matrix, the step-tracking algorithms determine the

Cholesky matrix factors of the G matrix as in Equations (4.13)-(4.15). If one or both

of the elements of the diagonal D matrix are less than some small positive, δG, then

the Hessian matrix lacks the required positive definiteness for a strong minimum [34],

and the algorithm determines that the current trial point is on a sidelobe of the gain

99

pattern cost function. A value of δG=10 is again used in simulation with good results

for weak minimum discrimination.

If the algorithm determines that it has reached a weak minimum, a specific update,

αpk, is used in Equation (4.4) to determine the location of the next trial point.

The two eigenvectors of the Hessian matrix point in the direction of maximum and

minimum curvature because the cost function is a function of only two independent

variables [34]. Because the gain pattern cost function is radially symmetric, and

the weak minima corresponding to antenna sidelobes circle the mainlobe, one of the

eigenvectors of the Hessian matrix points along the valley of the weak minimum

(direction of minimum curvature), and the other points orthogonal to it; i.e. either

toward boresight, or 180◦ away from boresight (direction of maximum curvature).

One may easily calculate a numeric value for the cost function curvature in the

direction of each eigenvector by calculating vTj Gvj where vj is the j-th eigenvector

of the Hessian matrix. Therefore, if the eigenvectors of the approximate Hessian are

calculated, and the direction of maximum curvature is found, the descent direction

may be taken as either vmax or −vmax where vmax is the eigenvector corresponding to

the direction of maximum curvature. Next, a step length value, α, must be calculated.

The value of the step length used in Equation (4.4) when the algorithm is at a weak

minimum is 1.85◦, the average peak to peak distance beginning at the mainlobe and

extending to the fourth sidelobe of the antenna gain pattern. Because the distance

between the sidelobes in the gain pattern is a function of HPBW, the α = 1.85◦ rule

changes dependent upon the HPBW of the given antenna. In order to determine

whether vj or −vmax is the appropriate descent direction, one must evaluate the cost

function at F (xk + 1.85vmax) and compare the measurement to F (xk). If the cost

function is higher at F (xk+1.85vmax) then the appropriate descent direction is −vmax;

whereas, if the cost function is lower, then vj should be taken as the descent direction.

Linear Search

Once the descent direction is calculated in Line 24 of Algorithm 1, its magnitude is

restricted to within a specified “region of confidence” for trial points not located at a

100

minima in the gain pattern cost function (Line 25) [35]. The region of confidence for

the step-tracking application is set to |pk| < 1◦. The 1◦ region of confidence prevents

the nonlinear optimization algorithms from jumping over nearby local maximas as

they progress into the valleys of the gain pattern cost function. Without the 1◦

restriction, the possibility exists for a wrong-way jump from one local maxima over

the next local maxima resulting in a descent into a sidelobe valley that is even farther

away from boresight. Because the distance between the nulls in the gain pattern cost

function is a function of HPBW, the 1◦ region of confidence varies with the HPBW

of the given antenna. After the conditional restriction on |pk| is applied, Line 26

calculates the desired step length along the descent direction according to a linear

search procedure. An appropriate step length will sufficiently reduce the directed

gradient of the cost function along the descent direction [34–36]. The directed gradient

measures the steepness of the cost function along a certain direction. If gradient values

are explicitly available, the criterion for a linear search is described by

|g(xk + αpk)
Tpk| ≤ −ηgTkpk (4.30)

where 0 ≤ η < 1 and is called the linear search parameter. When η equals 0, the

directed gradient at xk + αpk must equal zero, and an exact linear search is carried

out. Accurate linear searches are typically computationally wasteful; therefore, values

of η > 0 are chosen for most nonlinear optimization algorithms [34,35]. If the gradient

values are not available, and are instead calculated by finite differencing, the criterion

in Equation (4.30) for the reduction of the directed gradient may be modified to

|F (xk + αpk)− F (xk + νpk)|
δf

≤ −ηgTkpk (4.31)

where ν is the multiplier that satisfies |xk + αpk| − |xk + νpk| = δf [35].

The MN, BFGS, DFP, and SD algorithms implement the linear search in two steps.

First, the algorithm brackets an interval containing a minimum along the descent

direction, and secondly, the algorithm solves for the step length using a quadratic

polynomial interpolation procedure. In order to bracket a minimum along the descent

101

direction, the optimization algorithms use function comparison methods [34]. |pk| is

taken to be the initial step size, α0, and a search is carried out by successively doubling

the step size as in Figure 4-7 until an increase in the value of the cost function occurs.

If an increase in the cost function is found on the initial step, the bracketing procedure

carries out the search in the -pk direction until the interval is bracketed. The step-

tracking simulations developed in this chapter limit the number of times the step size

is doubled when attempting to bracket a minimum along the descent direction. If a

minimum has not been located within this time, the algorithm takes the initial step

length, α0 = |pk|. This limitation eliminates wasteful computation that typically

occurs near a local minima where α0 is usually small.

Figure 4-7: Strategy for Bracketing Minimum Along Descent Direction. Figure cour-
tesy of Scales [34].

Once the optimization algorithm brackets a minimum along pk, a quadratic poly-

nomial interpolation procedure is used to accomplish the linear search until the crite-

rion in (4.31) is met. Higher order interpolation methods use function gradient values

which are not explicitly available from the gain pattern cost function; therefore, the

optimization algorithms use the quadratic interpolation method which does not re-

quire gradient values. For a description of both the quadratic interpolation procedure

and higher order interpolation methods, the reader is referred to [34].

102

4.5 Spatial Pull-in Simulations

The four optimization methods described in Sections 4.4.1–4.4.3, along with the Spiral

Search method from Section 4.3.2, are used to develop step-tracking algorithms that

accomplish closed-loop spatial pull-in. The spatial pull-in simulations for each of

the five algorithms are accomplished in MATLAB and the basic source code for

each algorithm may be found in Appendix C. For simplicity in the spatial pull-

in simulations, the satellite boresight always begins at 0◦ xeli and 0◦ eli, and the

simulations limit the initial pointing error to a radius of 4.5◦ away from the origin.

The maximum extent of this radius places the antenna’s pointing vector on the third

sidelobe of the gain pattern, the assumed worst case initial pointing error for the

open-loop pointing strategy. All closed-loop pointing strategies require an established

communications link with the satellite in order to obtain SNR measurements. The

quality of this link for the nominal APS system is severely degraded outside the 4.5◦

radius, and the SNR metric may not even be available for use in closed-loop pointing

schemes. For this reason, the assumption that the initial pointing error falls within a

4.5◦ radius from boresight must be made. A random set of 1024 test points that are

uniformly distributed over a circle centered at the origin with a 4.5◦ radius is created

and shown together with the cost function contours in Figure 4-8. The spatial pull-in

simulations are tested from each of the 1024 starting coordinates plotted in Figure

4-8. The average convergence time and percent convergence rates across the 1024

starting locations determine the spatial pull-in performance of each simulation.

The inertial pointing error from the open-loop feedback controller makes the SNR

measurements from the gain pattern cost function stochastic, and this effect must be

modeled in the MATLAB simulations. The pointing error distributions developed in

Section 3.3 are applied to the MATLAB spatial pull-in simulations as distribution

models for xeli and eli. The spatial pull-in simulations model the pointing error

component distributions as normal with zero mean and variances equal to 0.0004◦
2
,

an approximate worst-case scenario for the nominal APS operating in an open-loop

fashion (See Table 3.1). MATLAB’s ‘randn’ function generates random pointing error

103

Figure 4-8: Starting Coordinates for Spatial Pull-in Simulation

component samples that meet the specified distribution parameters.

The MATLAB simulations determine the stare time by adjusting the number of

cost function measurements, n, obtained at a single trial point location. For each of

the n cost function measurements, an independent pointing error sample from the

‘randn’ function is added to both the desired xeli and eli coordinates to simulate the

effects of pointing error on obtaining SNR measurements. The n cost function values

for the given trial point location are next averaged, then rounded to the nearest tenth

to simulate the fidelity limitation of the SNR metric. The total stare time at each

trial point is determined according to

stare time (sec) = 0.25n (4.32)

where the 0.25 seconds value equals the pointing error time dependency observed

in Figures 3-21 and 3-22. Increasing the stare time ensures that the pointing error

is, on average, closer to its population mean, which is namely zero according to

the distribution models. When pointing errors average to zero, the cost function

measurement at the given inertial coordinates may be more accurately determined.

To get a feel for how long of a stare time is required for accurate SNR measurements,

a confidence interval on pointing error may be calculated. If a confidence interval

104

width of 0.02◦ is desired for each of the inertial pointing error components, at the

95% confidence level, Equation (4.33) reveals that a sample size of 16 independent

pointing error samples is required corresponding to a stare time of 4 seconds per trial

point location, according to Equation (4.32). The spatial pull-in performance of each

of the algorithms is examined for different stare times to see how the performance

changes as a function of the stare time parameter.

nCI =

(
2zα

2
S

wCI

)2

(4.33)

In Equation (4.33) nCI is the number of independent pointing error samples required

corresponding to the number of cost function evaluations conducted per trial point

(n). zα
2

is the critical value from the normal distribution corresponding to the given

confidence interval, S is the standard deviation of the population, and w is the desired

confidence interval width [37].

Because of the motion of the aircraft, the gain pattern cost function translates in

the inertial reference frame defined by the cross-elevation and elevation axes. Figure

4-9 plots the magnitude of a geostationary target satellite’s inertial angular velocity

for a typical 707 flight profile. Some of the errors outlined in Section 2.2.1 also cause

slowly time varying errors that can be simulated by translating the cost function at

a certain velocity in the xeli, eli plane. The total translation of the cost function

in the spatial pull-in simulations is approximated by the maximum target satellite

velocity from Figure 4-9 plus an additional amount used to approximate time varying

pointing errors. The spatial pull-in simulations use a value of 0.0005
◦

sec
for the total

translational velocity of the cost function (vpat). In the MATLAB simulation, the cost

function translates equally in the negative xeli and eli directions for the duration of

the simulation which has the largest impact on the performance of step-tracking

algorithms.

Figures 3-17 and 3-18 show that the step response rise time between two iner-

tial coordinates is 0.25 seconds, which conveniently equals the elapsed time between

cost function measurements taken at a single xeli, eli point when stare times are

105

Figure 4-9: Magnitude of Satellite Inertial Angular Velocity

implemented to average the effects of pointing error. Because the elapsed time be-

tween any two cost function evaluations equals 0.25 seconds, the location of bore-

sight in the xeli, eli plane is propagated after every cost function measurement by

0.0005
◦

sec
· 0.25sec = 1.25 · 10−4 ◦. If the computational time within the step-tracking

algorithm is ignored, the total convergence time to accomplish spatial pull-in may be

approximated by

tc =
1.25 · 10−4 · nFT

vpat
(4.34)

In Equation (4.34), tc equals the convergence time, 1.25 · 10−4 is the angular distance

the pattern travels in 0.25 seconds, FT is the total number of cost function evaluations,

n is the number of cost function evaluations performed per trial point, and vpat is the

translational velocity of the gain pattern cost function. Equation (4.34) directly

relates the number of trial points visited in a given spatial pull-in algorithm to the

convergence time for a given stare time parameter. The spatial pull-in simulations

upper-bound the convergence times by limiting the number of trial points visited per

simulation to 500. This restriction eliminates excessive computation for algorithms

that are nonconvergent.

Spatial pull-in simulations were conducted for each of the five step-tracking al-

gorithms in a deterministic state to serve as a base-line for comparing performance

and determining optimal linear search parameters. The deterministic spatial pull-

106

in tests did not incorporate variance in cost function measurements due to inertial

pointing error; therefore, the results of the deterministic simulations are completely

reproduceable. The translating motion of the gain pattern cost function was also

removed from the deterministic scenario. Table 4.1 contains the average number of

cost function trial points visited, computed over all 1024 starting locations, for each of

the step-tracking algorithms simulated in the deterministic scenario. A red subscript

identifies the linear search parameter used in each simulation which ranges from 0.01

to 0.9. The simulation results for each algorithm in Table 4.1 are arranged from the

fewest number of trial points visited to the greatest number of points visited for the

various linear search parameters. Table 4.2 displays the spatial pull-in performance

data for the best performing configuration of each algorithm from Table 4.1. The

ratio listed in the first row of Table 2 is calculated by dividing the average number of

trial points visited for each of the algorithms by the average number of trial points

visited by the SS algorithm, the algorithm that had the lowest average number of trial

points visited. The convergence times in the second row of Table 4.2 are computed

according to Equation (4.34). Finally, the spatial pull-in convergence percentages in

row three of Table 4.2 are given by Equation (4.35):

ρ =

(
1− nnc

1024

)
· 100 (4.35)

where ρ is the simulation’s convergence percentage and nnc is the number of non-

converging points per simulation. For the spatial pull-in simulations, an algorithm

converges from a particular starting point if the distance from boresight is reduced

to within the closed-loop pointing requirement of 0.25◦ within 500 trial points.

After the deterministic simulations were accomplished, the pointing error and

satellite motion effects were introduced into the spatial pull-in simulations. For these

simulations, involving a stochastic, time-varying cost function, the stare time was

varied for each algorithm as well as the linear search parameter for the optimization

methods. Stare times were varied by adjusting the number of cost function evaluations

conducted per trial point. Simulations were conducted with 1, 5, 10, 15, and 20 cost

107

function evaluations per trial point corresponding to stare times of 0.25, 1.25, 2.5, 3.75,

and 5 seconds. Tables 4.3–4.12 present the results for the stochastic, time-varying

cost function spatial pull-in simulations where the number of cost function evaluations

conducted per trial point equals n. The simulation results for each stare time are

presented in the same fashion as Tables 4.1 and 4.2. Because of the stochastic nature

of the cost function, the results in Tables 4.3–4.12 are not exactly reproduceable.

The underlined values in Tables 4.3–4.12 represent simulation results which are not

significantly different from each other according to the statistical z-test. Tables 4.3-

4.12 only illustrate the statistical grouping including the best performing algorithms

of each type. The z-test procedure for large samples sizes is described in [37].

Table 4.1: Average Number of Trial Points Visited for Deterministic Gain Pattern
Cost Function

MN 162.80.9 166.7.05 167.00.3 167.30.7 171.80.1 172.1.01

BFGS 109.60.7 110.00.5 111.00.9 114.20.3 115.10.1 119.2.01

DFP 125.50.1 125.7.01 129.90.3 133.30.5 136.20.7 138.30.9

SD 223.20.1 228.7.01 229.60.3 278.10.5 309.30.9 311.70.7

SS 68.6

Table 4.2: Algorithm Comparison for Deterministic Cost Function

SS BFGS0.7 DFP0.1 MN0.9 SD0.1

Ratio 1 1.60 1.83 2.37 3.25
tc (sec) 17 27 31 40.7 56
ρ 84.8 98.3 95.4 93.8 67.9

Table 4.3: Average Number of Trial Points Visited when the Number of Cost Function
Evaluations per Trial Point (n) equals 1

MN 212.50.7 215.2.01 218.40.3 218.40.5 222.40.1 223.30.9

BFGS 162.90.7 165.00.5 169.00.3 174.50.9 177.3.01 179.30.1

DFP 216.5.01 218.10.1 237.60.3 253.30.5 287.90.7 301.60.9

SD 184.90.3 189.10.1 190.80.5 191.7.01 200.80.7 209.50.9

SS 104.6

108

Table 4.4: Algorithm Comparison when the Number of Cost Function Evaluations
per Trial Point (n) equals 1

SS BFGS0.7 SD0.3 MN0.7 DFP.01

Ratio 1 1.56 1.77 2.03 2.07
tc (sec) 24 38 44 51 51
ρ 84.0 99.1 98.2 96.0 93.0

Table 4.5: Average Number of Trial Points Visited when the Number of Cost Function
Evaluations per Trial Point (n) equals 5

MN 127.90.9 131.20.7 131.60.3 135.80.5 137.30.1 138.6.01

BFGS 99.60.7 103.90.5 104.60.3 104.80.9 110.20.1 110.3.01

DFP 121.10.1 122.8.01 139.90.3 141.20.5 147.70.7 151.80.9

SD 151.20.1 155.00.3 160.0.01 163.40.5 179.50.7 187.20.9

SS 99.7

Table 4.6: Algorithm Comparison when the Number of Cost Function Evaluations
per Trial Point (n) equals 5

BFGS0.7 SS DFP0.1 MN0.9 SD0.1

Ratio 1 1 1.22 1.28 1.52
tc (min) 1.9 1.9 2.3 2.5 2.9
ρ 99.9 85.3 99.3 100 96.7

Table 4.7: Average Number of Trial Points Visited when the Number of Cost Function
Evaluations per Trial Point (n) equals 10

MN 132.50.9 133.00.7 135.60.5 139.00.3 141.60.1 141.9.01

BFGS 104.40.7 105.40.5 105.70.9 111.20.3 118.70.1 121.6.01

DFP 130.70.1 135.0.01 140.30.7 141.70.5 146.10.3 146.70.9

SD 194.00.1 197.40.3 204.3.01 204.40.5 219.30.3 226.80.9

SS 100.1

Table 4.8: Algorithm Comparison when the Number of Cost Function Evaluations
per Trial Point (n) equals 10

SS BFGS0.7 DFP0.1 MN0.9 SD0.1

Ratio 1 1.04 1.31 1.32 1.94
tc (min) 3.9 3.9 5.0 5.1 7.6
ρ 84.8 100 99.0 99.9 91.4

109

Table 4.9: Average Number of Trial Points Visited when the Number of Cost Function
Evaluations per Trial Point (n) equals 15

MN 144.60.7 145.70.9 148.30.5 149.90.3 152.7.01 154.50.1

BFGS 125.50.7 128.80.9 129.50.5 142.70.3 150.90.1 152.1.01

DFP 182.60.5 183.10.7 185.60.9 194.90.1 195.90.3 203.9.01

SD 303.30.9 314.30.5 323.00.7 326.30.1 329.90.3 335.1.01

SS 100.1

Table 4.10: Algorithm Comparison when the Number of Cost Function Evaluations
per Trial Point (n) equals 15

SS BFGS0.7 MN0.7 DFP0.5 SD0.9

Ratio 1 1.25 1.45 1.83 3.03
tc (min) 5.8 7.2 8.4 10.8 18.3
ρ 82.6 100 100 96.8 78.3

Table 4.11: Average Number of Trial Points Visited when the Number of Cost Func-
tion Evaluations per Trial Point (n) equals 20

MN 156.40.5 156.60.9 157.80.7 159.00.3 161.20.1 161.8.01

BFGS 165.40.7 169.20.9 179.20.5 189.60.3 194.80.1 199.7.01

DFP 246.50.9 248.10.7 249.80.5 262.00.3 268.00.1 276.5.01

SD 332.50.9 342.40.5 346.20.7 356.40.1 356.80.3 365.8.01

SS 100.8

Table 4.12: Algorithm Comparison when the Number of Cost Function Evaluations
per Trial Point (n) equals 20

SS MN0.5 BFGS0.7 DFP0.9 SD0.9

Ratio 1 1.54 1.62 2.42 3.27
tc (min) 7.9 12.2 12.9 19.6 26.8
ρ 76.4 100 99.9 92.8 78.2

110

4.5.1 Observations

Based on the spatial pull-in simulation results presented in Tables 4.3–4.12 one con-

cludes that the SS and BFGS step-tracking algorithms consistently outperform the

other algorithms. As alluded to in Section 4.3.2, the SS algorithm has convergence

limitations and displays a maximum convergence percentage of only 85% for the n=5

scenario (Table 4.6). Most of the nonlinear optimization step-tracking algorithms

display convergence percentages upwards of 90% under most circumstances. The

BFGS algorithm consistently displays high convergence percentages of 98% or better.

Although the BFGS algorithm typically requires a higher number of trial points to

reach convergence than does the SS algorithm, the difference in convergence times

between the two step-tracking methods is negligible for shorter stare times (n < 15).

The spatial pull-in simulation results shed light on what the optimal stare time

should be for a step-tracking algorithm implemented on an airborne SATCOM ter-

minal. Even though Equation (4.33) determined that 16 cost function measurements

per trial point are necessary to reduce the pointing error confidence interval to 0.02◦,

such a large value of n is, in fact, undesirable. Figure 4-10 shows a scatter plot of

the convergence times versus n for each of the step-tracking algorithms tested. From

Figure 4-10, one sees that measuring the cost function only once at each trial point

visited by the step-tracking algorithm produces convergence times much shorter than

measuring the cost function 5, 10, 15, or 20 times per trial point. Tables 4.3 and

4.5 indicate that the step-tracking algorithms visit a greater number of trial points

for a stare time of 0.25 seconds than for a stare time of 1.25 seconds; however, the

time spent at each trial point when the stare time is 1.25 seconds increases the total

convergence time substantially.

The results of the spatial pull-in simulations suggest the optimal linear search pa-

rameter that should be used in each of the different optimization algorithms for the

selected stare times. The optimal linear search parameters for the algorithms in the

deterministic simulations are the same, within the statistical significance groupings,

as the optimal linear search parameters in the stochastic simulations for the n=1, 5,

111

Figure 4-10: Number of Cost Function Evaluations per Trial Point vs. Spatial Pull-in
Convergence Time

and 10 scenarios. Once the stare times reach 3.75 seconds or higher, cost function

translational motion more strongly affects the performance of the optimization algo-

rithms, and the linear search parameters that give the best performance change for

some algorithms.

The spatial pull-in simulation results indicate that the MN, DFP, and SD algo-

rithms do not perform as well as the BFGS and SS algorithms. Because the MN al-

gorithm requires approximations to the second-derivative matrix at each trial point,

as shown in Equation (4.12), one witnesses greater numbers of average trial point

evaluations and higher convergence times when compared to the BFGS and SS algo-

rithms. Also, because finite difference techniques approximate both the gradient and

the Hessian matrix, the search direction determined by (4.12) contains errors caused

by these approximations. Gill explicitly warns of the dangers of using finite difference

techniques to accomplish both gradient and Hessian approximations [35]. Even so,

the MN algorithm produces high convergence percentages and convergence times that

may be acceptable when stare times are short.

112

The DFP algorithm differs from the BFGS algorithm only by the update matrix

formula presented in Equation (4.23). The literature suggests that BFGS algorithms

may out-perform DFP methods by as much as an order of magnitude in some instances

[34]. For the spatial pull-in simulations, BFGS step-tracking algorithms consistently

out-perform algorithms incorporating DFP optimization methods; therefore, BFGS

methods should be favored for use in step-tracking applications.

Because of the radial nature of the gain pattern cost function, Steepest Descent

methods produce search directions which provide the shortest paths to minima in the

cost function when the cost function is deterministic and the errors caused by finite

differencing are ignored. SD methods rely heavily on accurate linear searches which

are accomplished more easily when drastic changes to the initial step length, α0, are

not required. Equation (4.25) shows that the initial step length for the SD algorithm

equals the magnitude of the gradient vector, which could be quite large. Even if

the magnitude of the initial step length is restricted to a 1◦ region of confidence, as

described in Section 4.4.4, a 1◦ initial step size could be too large when the trial

point lies in the vicinity of a minima. In these instances, the linear search procedure

must work hard both to bracket a minimum and to find a step length that meets

the criterion in Equation (4.31). Newton methods typically generate initial step sizes

that already meet the linear search requirement in Equation (4.31); therefore, Newton

methods outperform the SD method in nearly all the spatial pull-in simulations.

4.6 Spatial Pull-in Robustness Tests

The two best-performing algorithms in Section 4.5, the SS algorithm and the BFGS

algorithm with η = 0.7, were subjected to spatial pull-in tests under harsher con-

ditions in order to test the robustness of each of the methods. The spatial pull-in

robustness simulations incorporate greater open-loop pointing errors by increasing

the variances on the inertial angular components of pointing error. The robust-

ness simulations also exhibit faster translational movement (vpat) of the cost function

to simulate more drastic time-varying sources of open-loop pointing error or more

113

pronounced satellite motion. Both algorithms in the spatial pull-in robustness sim-

ulations conduct spatial pull-in from the same 1024 starting locations displayed in

Figure 4-8.

During the robustness simulations, both the SS and BFGS algorithms were left in

the same configurations used in the spatial pull-in tests conducted in Section 4.5. The

spatial pull-in tests for increased pointing error variances and cost function velocities

incorporated stare times of 0.25 and 1.25 seconds. Tables 4.13 and 4.14 present the

results of the robustness simulations. The ratio value is the ratio of the average

number of trial points visited for the particular velocity-variance combination listed

in the given column compared to the number of trial points visited for the velocity-

variance combination in the first column. The results listed in the first column of

Tables 4.13 and 4.14 are the same as the results from the corresponding tests in

Section 4.5. Tables 4.13 and 4.14 calculate convergence times (tc) and percentages

(ρ) according to Equations (4.34)–(4.35).

4.6.1 Observations

As expected, the performance of both algorithms degrades as the pointing error vari-

ances and pattern velocities are increased. Tables 4.13–4.14 show performance drops

in terms of average number of trial points visited, convergence times, and convergence

percentages. The underlined values in Tables 4.13–4.14 represent simulation results

that are not statistically different from each other according to the z-test. For the

n=1 scenario, the BFGS step-tracking algorithm feels the effects of the worsening

pointing error and pattern velocity conditions much more so than the SS algorithm.

The convergence percentage of the BFGS algorithm drops significantly for the last two

velocity-variance combinations and average convergence times are nearly tripled. The

SS algorithm demonstrates only slight drops in convergence percentages and slight in-

creases in convergence times as conditions worsen for the n=1 case. For the n=5 case,

the BFGS algorithm maintains convergence percentages greater than 95%. Table 4.14

shows that average convergence times are doubled for the BFGS approach under the

harshest velocity-variance conditions of the test when n=5. The SS algorithm ex-

114

Table 4.13: Spatial Pull-in Robustness Simulation (Number of Cost Function Evalu-
ations per Trial Point (n) equals 1)

velocity/variance
5e-4/
4e-4

1e-3/
4e-4

5e-4/
8e-4

1e-3/
8e-4

2e-3/
8e-4

1e-3/
1.6e-3

2e-3/
1.6e-3

BFGS
Ratio 1 1.01 1.68 1.64 1.64 2.44 2.42
tc (sec) 38 39 64 64 66 96 96
ρ 99.1 99.5 92.6 92.5 90.4 73.2 70.9

SS
Ratio 1 1 1.07 1.07 1.08 1.20 1.22
tc (sec) 24 24 26 26 26 30 30
ρ 84.0 85.4 84.7 85.3 85.6 83.4 83.3

Table 4.14: Spatial Pull-in Robustness Simulation (Number of Cost Function Evalu-
ations per Trial Point (n) equals 5)

velocity/variance
5e-4/
4e-4

1e-3/
4e-4

5e-4/
8e-4

1e-3/
8e-4

2e-3/
8e-4

1e-3/
1.6e-3

2e-3/
1.6e-3

BFGS
Ratio 1 1.09 1.11 1.21 1.61 1.68 2.15
tc (min) 1.9 2.1 2.1 2.3 3.1 3.3 4.2
ρ 99.9 100 99.9 99.8 98.8 99.6 95.1

SS
Ratio 1 1.01 1.03 1.06 1.06 1.14 1.13
tc (min) 1.9 2.0 2.0 2.0 2.1 2.2 2.2
ρ 85.3 84.4 84.6 84.4 65.6 51.0 83.1

115

hibits significant drops in convergence percentages for the harsher velocity-variance

combinations in the n=5 scenario, but the average convergence time is only slightly

increased.

The engineer must decide how to structure the step-tracking algorithm to provide

adequate spatial pull-in performance when open-loop pointing errors impose harsher

conditions on the cost function. The SS algorithm may be used with a negligible stare

time (n=1) to provide quick convergence times while achieving convergence rates of

approximately 85% at best. If higher convergence percentages for spatial pull-in are

desired, the engineer may opt to use the BFGS algorithm while incorporating a brief

stare time, such as 1.25 seconds for the n=5 case. The added stare time produces

longer convergence times but may be worth the trade-off for added convergence per-

centages.

4.7 A Look at Tracking

To demonstrate how step-tracking algorithms may be applied to accomplishing closed-

loop tracking of a target satellite, the BFGS algorithm with a linear search parameter

of 0.7 undergoes a series of tracking simulations. Separate tracking simulations were

conducted for each of the pointing error variance and cost function velocity pairs used

in Section 4.6. In a tracking configuration, the BFGS algorithm removes the terminal

conditions imposed during spatial pull-in. The algorithm tracks the target satellite

by continuously minimizing the gain pattern cost function until 500 trial points are

evaluated in each simulation. Tracking performance of the BFGS algorithm was ex-

amined for both the n=1 and n=5 cases. According to Equation (4.34), for the n=1

scenario, tracking was accomplished for approximately 125 seconds per simulation,

and for the n=5 case, tracking was accomplished for approximately 625 seconds per

simulation. Each of the tracking simulations were conducted beginning from 1024

starting locations within a 0.1◦ radius from boresight (Figure 4-11). The close prox-

imity of the initial starting points in the tracking simulations to boresight simulates

the result of an accurate spatial pull-in procedure. During the tracking simulations,

116

Figure 4-11: Starting Coordinates for Tracking Simulations

Table 4.15: BFGS Tracking Simulation (Number of Cost Function Evaluations per
Trial Point (n) equals 1)

velocity/variance
1e-3/
4e-4

5e-4/
8e-4

1e-3/
8e-4

2e-3/
8e-4

1e-3/
1.6e-3

2e-3/
1.6e-3

d̄max (◦) 0.073 0.082 0.080 0.081 0.101 0.107
d̄mean (◦) 0.030 0.033 0.031 0.031 0.035 0.036
d̄σ (◦) 0.026 0.026 0.026 0.025 0.028 0.030

Table 4.16: BFGS Tracking Simulation (Number of Cost Function Evaluations per
Trial Point (n) equals 5)

velocity/variance
1e-3/
4e-4

5e-4/
8e-4

1e-3/
8e-4

2e-3/
8e-4

1e-3/
1.6e-3

2e-3/
1.6e-3

d̄max (◦) 0.071 0.072 0.075 0.115 0.091 0.157
d̄mean (◦) 0.031 0.032 0.032 0.048 0.036 0.059
d̄σ (◦) 0.030 0.030 0.030 0.037 0.031 0.046

117

the maximum distance from boresight (dmax), mean distance from boresight (dmean),

and standard deviation of the distance from boresight (dσ) were recorded for each

starting location in Figure 4-11. Table 4.15 summarizes the mean of these three met-

rics over all 1024 initial starting points for each pointing error variance and pattern

velocity combination for the n=1 case. Table 4.16 displays the results for the n=5

case. The bar above the metrics in Tables 4.15–4.16 indicates an average value.

4.7.1 Observations

Tables 4.15 and 4.16 demonstrate satisfactory tracking performance from the BFGS

step-tracking algorithm. The average maximum deviations from boresight, d̄max,

never exceed the 0.25◦ requirement outlined in Section 2.3, and the average mean de-

viations from boresight, d̄mean, are lower still. Even when the pointing error variances

and pattern velocities are increased to values higher than those assumed for the op-

erating environment of the nominal APS, the BFGS algorithm remains comfortably

within the 0.25◦ requirement for closed-loop operation. Tracking for the n=1 case

slightly outperforms the n=5 case for higher velocity-variance combinations.

4.8 Simulation Processing Times

Each of the individual spatial pull-in, and tracking simulations consumes a substan-

tial amount of processing time because each simulation involves either spatial pull-in

or tracking from 1024 starting locations. Figure 4-8 shows the starting locations for

the spatial pull-in simulations, and Figure 4-11 depicts the initial trial points for

the tracking simulations. To carry out the spatial pull-in and tracking simulations

presented in this chapter, the step-tracking algorithms found in Appendix C were

modified to run on a parallel processing network located at MIT Lincoln Laboratory

known as the LLGrid. In each simulation, each of the 1024 starting locations gets

assigned to one of 64 networked computers on the LLGrid; thus, a single computer

becomes responsible for conducting either spatial pull-in or tracking from only 16

initial test points per simulation rather than all 1024. To compare the benefits of

118

using parallel processing, the total spatial pull-in simulation times, using the BFGS

algorithm with a linear search parameter of 0.7, are examined as the number of cost

function evaluations per trial point (n) is varied. Figure 4-12 shows these simulation

times for both a single processor and for 64 networked processors on the LLGrid. One

may appreciate the time-saving benefits of parallel processing when lengthy simula-

tions involving multiple parameters are required, as was the case in the spatial pull-in

and tracking simulations presented in this chapter.

Figure 4-12: BFGS0.7 Spatial Pull-in Simulation Times vs. Number of Cost Function
Evaluations per Trial Point (n) for Serial and Parallel Processing

119

120

Chapter 5

Conclusions

5.1 Open-loop Controller Simulation Results Sum-

mary

This thesis developed a hybrid open/closed-loop antenna pointing strategy for the

nominal APS defined in Section 2.3. To accomplish open-loop pointing, a pedestal

feedback controller was designed using state-space and optimal control techniques.

The feedback controller mitigates the effects of base motion disturbances caused by

vehicle motion and tracks reference commands issued by the closed-loop portion of the

hybrid pointing scheme. The performance of the controller on both a linearized plant

model and a more detailed nonlinear plant model was examined through simulation

in Sections 3.2.5–3.2.6.

The controller was found to point the antenna of the nominal APS to a loca-

tion in inertial space within the 0.1◦ requirement for open-loop pointing error before

considering the effects of potential sources of error. Because the simulation results

indicate that the pedestal feedback controller developed in Chapter 3 is capable of

meeting the design requirement for open-loop pointing, the open-loop portion of the

hybrid open/closed-loop strategy is deemed satisfactory. When sources of open-loop

pointing error are introduced to the antenna pointing problem in mobile SATCOM

applications, some form of closed-loop pointing is desired.

121

5.2 Closed-loop Step-tracking Simulation Results

Summary

Step-tracking methods were investigated for the nominal APS because they require no

additional hardware components and effectively offer the simplest method of closed-

loop antenna pointing. Four step-tracking algorithms were developed using methods

of nonlinear cost function optimization along with a fifth algorithm developed using

a spiral search function comparison technique. The closed-loop spatial pull-in per-

formance of the five step-tracking algorithms was tested through simulation. The

first set of spatial pull-in simulations assumed a particular operating environment for

the nominal APS in an airborne SATCOM application. This environment includes a

stochastic cost function, caused by open-loop inertial pointing errors, and a cost func-

tion that translates in inertial space due to satellite motion and an assumed amount

of time-varying open-loop pointing error (See Section 4.5).

The results of the spatial pull-in simulations, presented in Tables 4.1–4.12, illus-

trate that the BFGS and SS algorithms outperform the remainder of the step-tracking

algorithms. To meet the closed-loop pointing requirement outlined in Section 2.3, the

step-tracking algorithms must converge to within 0.25◦ of boresight in the spatial

pull-in stage. The BFGS algorithm displays very high percentages of convergence to

within the 0.25◦ requirement (upwards of 98%) and demonstrates average convergence

times on the same order as the SS algorithm for shorter stare times (n < 15). On

average, the SS algorithm converges to within 0.25◦ of boresight more quickly than

the BFGS algorithm but exhibits convergence percentages of only 85% or worse. The

first set of spatial pull-in tests also demonstrate that stare times should typically be

made as short as possible to achieve the quickest convergence times (Figure 4-10).

In these tests, the average spatial pull-in convergence times for negligible stare times

(n = 1) are less than a minute (Table 4.4).

The performance of the BFGS and SS algorithms was tested through simulation for

harsher operating environments where greater open-loop pointing errors and larger

effects of time-varying sources of open-loop pointing error were considered. The

122

results of the step-tracking algorithm robustness tests, presented in Tables 4.13 and

4.14, demonstrate that the SS algorithm continues to perform better for negligible

stare times (n = 1); whereas, the BFGS algorithm performs better when a short

stare time is incorporated, as in the n = 5 case. The SS algorithm in the n = 1

configuration shows average convergence times of 30 seconds or faster but continues

to have convergence percentages of only 85% at best. The BFGS algorithm in the

n = 5 configuration maintains convergence percentages of 95% or better but average

convergence times are extended to around 4 minutes for the harshest of the velocity-

variance combinations. When operating environments are worse than those assumed

for the nominal APS, the engineer may select a SS step-tracking method, with quick

convergence times and lower convergence percentages, or sacrifice convergence time for

higher reliability with the BFGS approach. For many mobile SATCOM applications,

wait times for accomplishing spatial pull-in of up to 5 minutes may be acceptable and

worth the trade-off for the higher convergence percentages provided by the BFGS

algorithm.

Because the SS function comparison algorithm cannot be used for tracking without

major modifications to the algorithm structure, only the BFGS algorithm was im-

plemented in closed-loop tracking simulations. To gauge the robustness of the BFGS

algorithm in a tracking configuration, the tracking simulations were conducted for the

same velocity-variance combinations used in the spatial pull-in robustness tests. The

tracking simulations incorporated stare times of 0.25 and 1.25 seconds. The results

of the tracking simulations presented in Tables 4.15 and 4.16 support the conclusion

that a BFGS step-tracking algorithm could be used to maintain closed-loop inertial

tracking to within the 0.25◦ requirement even in harsher operating environments than

assumed for the nominal APS. The results of the tracking simulations also indicate

that stare times should be kept as short as possible to achieve the best tracking

performance.

123

5.3 Overall Contributions

Major contributions made by the research presented in this thesis are listed below:

1. Using optimal and state-space control techniques, this thesis developed an open-

loop pedestal controller for a nominal, two-axis, azimuth-elevation APS that

mitigates the effects of aircraft motion and tracks input reference commands.

The techniques used to develop the pedestal controller for the nominal APS may

be applied to other mobile SATCOM projects where two-axis, azimuth-elevation

pedestals are employed to accomplish antenna pointing.

2. A Simulink simulation was developed to simulate the pointing performance of

the open-loop pedestal controller on the nominal APS. The simulation may be

easily modified and used to determine the open-loop pointing performance of

similar APSs used on other SATCOM projects.

3. Closed-loop step tracking algorithms were developed and shown to offer vi-

able solutions for accomplishing closed-loop antenna pointing on an airborne

SATCOM terminal. Both the BFGS and SS algorithms offer acceptable meth-

ods for accomplishing spatial pull-in even under conditions worse than those

assumed for the nominal APS. The BFGS method provides more reliable con-

vergence guarantees at the expense of slightly longer convergence times while

the SS algorithm performs in the opposite manner.

4. The BFGS step-tracking algorithm was shown to effectively accomplish closed-

loop target satellite tracking. In a tracking configuration, the BFGS algorithm

maintained inertial pointing to within the 0.25◦ of boresight requirement even

when the operating conditions were harsher than those assumed for the nominal

APS.

5. Because simulation results indicate that both the open-loop feedback controller

and select closed-loop step-tracking methods meet the requirements for the nom-

inal APS, the hybrid open/closed-loop approach to antenna pointing is consid-

124

ered feasible for an airborne SATCOM application. Both the open-loop con-

troller development techniques, and the closed-loop step-tracking algorithms,

may be applied to other SATCOM applications, either mobile or stationary. Be-

cause this thesis has shown a hybrid open/closed-loop antenna pointing strategy

to be feasible, accurate antenna pointing may be accomplished with a simple,

cost-effective APS without the need for more complex systems involving addi-

tional closed-loop tracking hardware.

5.4 Suggestions for Future Work

The Simulink model developed in Section 3.2.6 provides insight as to how the nominal

APS, while operating in an open-loop fashion, may actually perform while operating in

an airborne environment. As more complex pedestal dynamics models are developed,

the new effects may easily be added to the simulation and their impact on the overall

pointing error may be readily observed. In particular, models simulating the effects

of the open-loop sources of error, identified in Section 2.2.1, may be added to the

existing simulation. The MATLAB scripts for the step-tracking algorithms, located

in Appendix C, may be converted into Simulink models and the entire open/closed-

loop system could be simulated together in one location. The combined simulation

could provide greater insights to using hybrid pointing strategies on mobile SATCOM

terminals.

The open-loop controller developed in Chapter 3 yielded a system with a band-

width of only approximately 2.5 Hz because the harshest disturbance inputs occurred

at much lower frequencies (Figures 3-3 and 3-8). If the closed-loop pedestal con-

troller bandwidth could be increased, the step time between trial points could be

reduced. Consequently, the convergence times for the closed-loop step-tracking algo-

rithms could be lowered as the time spent traveling between trial points would be

reduced.

Both the SS and BFGS algorithms showed promising results for step-tracking

approaches to accomplishing spatial pull-in. A combined SS/BFGS algorithm could

125

be developed that achieves shorter average convergence times than a standard BFGS

approach, but higher convergence percentages than a stand-alone SS algorithm. The

hybrid SS/BFGS step-tracking approach could begin the spatial pull-in process with

an SS method and then switch to a BFGS method once the SS algorithm terminates.

If boresight is not located when the SS algorithm terminates, the BFGS algorithm

could accomplish the remainder of the spatial pull-in task. Convergence times would

be reduced by allowing the SS algorithm to accomplish as much of the spatial pull-in

task as possible before engaging the slower BFGS algorithm.

This thesis has shown through simulation the feasibility of using hybrid open/closed-

loop pointing strategies on mobile SATCOM terminals. The suggested next step in

implementing hybrid pointing strategies on actual terminal systems involves a series

of hardware tests. First, the pointing strategy should be applied to a terminal system

operating on the ground with no base motion disturbances. Secondly, pointing tests

may be conducted with the pedestal system operating on a motion simulator table

to mimic different mobile environments. Finally, the pointing strategy may be tested

with a vehicle-mounted APS. The tests occur in increasing order of complexity so

that issues with using a hybrid pointing strategy may be identified at the lowest level

and testing costs may be kept to a minimum.

126

Appendix A

Satellite Look Angle Calculations

Overview

This appendix presents two ways of calculating the desired local azimuth and elevation

look angles, azd and eld, and their rates, ȧzd and ėld, for airborne inertial pointing

applications using two-axis positioners. The first method involves finding position and

relative velocity vectors from a mobile terminal to a target satellite based on kinematic

relationships derived from the satellite’s orbital element set and the terminal’s GPS

location and inertial states. The second method calculates local look angles and their

rates if the desired inertial look angles are known in addition to the terminal’s inertial

information.

In this thesis, the “inertial” qualifier refers to the topocentric North, East, Down

(NED) reference frame. The NED frame rotates with the Earth and, therefore, is not

strictly an inertial reference frame. However, engineers still regard the NED coordi-

nate system as an inertial reference frame in many circumstances because rotations

of objects in this frame are generally much faster than the rotation of the coordinate

system itself [24].

The following generic formulas are used throughout this appendix to calculate

look angles and look angle rates:

127

azimuth =

(

arctan
(
y
x

))
mod 2π

if x ≥ 0(
arctan

(
y
x

)
+ π
)

mod 2π
if x < 0

(A.1)

elevation = arcsin

(
−z√

x2 + y2 + z2

)
(A.2)

d

dt
(azimuth) =

(
ẏ

x
− yẋ

x2

)
sec−2(azimuth) (A.3)

d

dt
(elevation) =

(
−ż√

x2 + y2 + z2
+
z(xẋ+ yẏ + zż)

(x2 + y2 + z2)
3
2

)
sec−1(elevation) (A.4)

where x, y, and z are the components of a pointing vector and ẋ, ẏ, and ż are the

components of a relative velocity vector. In a generic reference frame, the azimuth

look angle is a positive rotation about the z axis referenced from the x axis and

ranging from 0-360◦. The elevation look angle is an angle above or below the xy

plane with positive elevation angles defined as angles opposite the z axis. Elevation

angles range from -90◦ to +90◦. The look angles and look angle rates expressed in

Equations (A.1)-(A.4) may be calculated for any three-dimensional position/relative

velocity vector combination defined in any coordinate system.

A.1 Satellite Targeting Using Classical Orbital El-

ement Sets

If the Classical Orbital Elements (COEs) of a target satellite are known, pointing and

relative velocity vectors from a mobile terminal to the satellite may be calculated at

any instance in time, provided the GPS coordinates and inertial states of the terminal

are known at that time. To calculate the pointing and relative velocity vectors, the

position and velocity vectors of both the satellite and the terminal are calculated in

Earth-Centered Inertial (ECI) coordinates. The origin of the ECI coordinate frame

lies at the center of the earth and the fundamental plane is the equatorial plane.

The ECI primary axis points in the direction of the Vernal Equinox (the general

direction of the constellation Aries), and the z axis points toward the North Pole.

Figure A-1 illustrates the ECI coordinate system [38]. The reader should note that

128

the ECI coordinate system does not rotate as the earth spins about its rotational

axis; therefore, the ECI coordinate frame constitutes a true inertial reference frame.

Figure A-1: Earth-Centered Inertial (ECI) Coordinate System. Photo courtesy of
Chobotov [38].

To define the satellite’s position and velocity vectors as continuous functions of

time, the satellite’s COEs need only be known at a single instance in time. The

six COEs are the semimajor axis (a), eccentricity (e), inclination (i), right ascension

of the ascending node(Ω), argument of perigee (ω), and true anomaly (ν). The

instance in time when the COEs are defined is known as the epoch time [39]. The

COEs are converted to an initial position and velocity vector, defined at the epoch

time, according to the procedure in [39]. The initial position and velocity vectors

may be propagated through time using a Sundman transformation described in [38].

The MATLAB m-file ‘Keplar2RRR.m’ presented in this appendix inputs a target

satellite’s COEs and then calculates the satellite’s position and velocity vectors in

ECI coordinates at a particular time since the epoch time.

After the satellite’s position and velocity vectors in ECI coordinates are calcu-

lated as functions of time, one must determine the terminal’s position and velocity

vectors in ECI coordinates as well. The mobile terminal’s position and velocity vec-

tors are calculated as functions of time according to the procedure in [40]. The m-file

129

‘basemotionlatlongalt2ECINAVDATA.m’ presented in this appendix inputs a mobile

terminal’s geodetic latitude, longitude, and altitude, as well as the terminal’s compo-

nent velocities in the NED coordinate frame, and outputs the terminal’s position and

velocity vectors in ECI coordinates at a particular time since the target satellite’s

epoch time.

Once the position and velocity vectors of both the terminal and satellite are found,

the pointing vector and relative velocity vectors in ECI coordinates may be calculated

according to

rpointECI (t) = rsatECI (t)− rterminalECI (t) (A.5)

vrelECI (t) = vsatECI (t)− vterminalECI (t) (A.6)

where rsatECI , vsatECI and rterminalECI ,vterminalECI are the position and velocity vectors

in ECI coordinates of the satellite and terminal respectively. rpointECI and vrelECI in

Equations (A.5)-(A.6) represent the resultant pointing and relative velocity vectors

from the terminal to the satellite in ECI coordinates.

Next, rpointECI and vrelECI are resolved in the NED frame through the following

coordinate transformations:

rpointNED(t) =
[
Rpitch

(
− (latitude(t) + 90◦)

)][
Ryaw

(
αls(t)

)]
rpointECI (t) (A.7)

vrel inertialNED(t) =
[
Rpitch

(
− (latitude(t) + 90◦)

)][
Ryaw

(
αls(t)

)]
vrelECI (t) (A.8)

where Ryaw and Rpitch are coordinate transformation matrices for rotations about

the y and z axes of the given coordinate system. The
[
Ryaw

(
αls(t)

)]
coordinate

transformation in Equations (A.7)-(A.8) involves a rotation about the ECI z axis by

the local sidereal time angle, αls(t). The local sidereal time angle is defined as the

angle between the ECI primary axis and the local longitudinal meridian at a specific

instance in time. αls(t) may be calculated according to

αls(t) =
(
longitude(t) + [αg midnight + ωet]

)
mod 360◦

(A.9)

130

where longitude is the terminal’s geodetic longitude, ωe is the rotation rate of the

earth, t is seconds since midnight of the given day, and αg midnight is the right ascension

of the Greenwhich meridian at midnight of the current day. αg midnight in Equation

(A.9) may be calculated according to the method described in [38]. The
[
Rpitch

(
−

(latitude(t) + 90◦)
)]

coordinate transformation in Equations (A.7)-(A.8) rotates the

resultant vector about an intermediate pitch axis an amount equal to the negative of

the geodetic latitude angle plus 90◦. The resultant pointing vector, rpointNED has x,

y, and z components in the topocentric NED coordinate frame. The relative velocity

of the target satellite, as seen in the NED frame by an observer standing at the

terminal’s location, is found by taking the earth’s rotation into account according to

vrelNED(t) = vrel inertialNED(t)− (ωeNED × rpointNED(t)) (A.10)

where rpointNED and vrel inertialNED are found from Equations (A.7)-(A.8) and ωeNED is

the earth’s rotation rate resolved in the NED frame. With the pointing and relative

velocity vectors defined in the NED frame, the inertial look angles may be calculated

using Equations (A.1) and (A.2) where x, y, and z are the components of the NED

pointing vector, rpointNED(t). The inertial look angle rates may be calculated using

Equations (A.3) and (A.4) where ẋ, ẏ, and ż are the components of the NED relative

velocity vector, vrelNED . The resultant azimuth inertial look angle and its rate are

given the symbols azNED and ȧzNED respectively, and the inertial elevation angle and

its rate are represented as elNED and ėlNED respectively.

To calculate the desired local look angles and their rates, the pointing and relative

velocity vectors derived in Equations (A.7) and (A.10) must be transformed into the

Aircraft coordinate frame from Section 3.1.3. This transformation is accomplished

according to

131

rpointAircraft(t) =
[
Rroll

(
Φ(t)

)][
Rpitch

(
Θ(t)

)]
·
[
Ryaw

(
Ψ(t)

)]
rpointNED(t) (A.11)

vrel inertialAircraft(t) =
[
Rroll

(
Φ(t)

)][
Rpitch

(
Θ(t)

)]
·
[
Ryaw

(
Ψ(t)

)]
vrel inertialNED(t) (A.12)

vrelAircraft(t) = vrel inertialAircraft(t)− (ωeT × rpointAircraft(t)) (A.13)

where
[
Ryaw

(
Ψ(t)

)]
is a yaw transform matrix through the Euler heading angle (Ψ),[

Rpitch

(
Θ(t)

)]
is a pitch transform matrix through the Euler pitch angle (Θ), and[

Rroll

(
Φ(t)

)]
is a roll transform matrix through the Euler roll angle (Φ) [24]. The

relative velocity vector in the Aircraft coordinate frame, vrelAircraft , is the relative ve-

locity of the target satellite as seen by an observer located on the Aircraft. Equation

(A.13) calculates vrelAircraft by accounting for the component of linear velocity con-

tributed by the total rotational velocity, ωeT , of the Aircraft coordinate frame. ωeT is

calculated according to

ωeT = ωeAircraft + ωA/CAircraft (A.14)

where ωeAircraft is the earth’s rotation rate resolved in the Aircraft coordinate frame

and ωA/CAircraft is the vector of Aircraft rotational velocities calculated in Equation

(3.15). Assuming that all misalignment angles between the Aircraft coordinate system

and the base of the antenna positioner equal zero, the desired local look angles and

local look angle rates may be calculated using Equations (A.1)-(A.4). The x, y,

and z values in Equations (A.1)-(A.4) are the components of the pointing vector,

rpointAircraft , and the ẋ, ẏ, and ż values are the components of the relative velocity

vector, vrelAircraft . Equations (A.1) and (A.3) determine azd and ȧzd, and Equations

(A.2) and (A.4) determine eld and ėld.

A.2 Targetting Using Known Inertial Look Angles

This sections discusses the calculation of the desired local look angles and their rates

when the inertial look angles are known. This situation arises when one knows the

132

azNED and elNED angles of a geostationary target satellite or when one knows a

desired target location in the sky (as is the case in Section 4.1). The calculations

presented in this section assume the values of ȧzNED and ėlNED equal zero, implying

a stationary target in the NED reference frame. In order to determine the local

look angles, one first calculates a pointing vector in the NED frame using the known

inertial look angles:
x

y

z

NED

=

cos(elNED) cos(azNED)

cos(elNED) sin(azNED)

− sin(elNED)

 (A.15)

The pointing vector from Equation (A.15) is next transformed into the Aircraft co-

ordinate system as in Equation (A.11). Finally, the azd and eld look angles are

calculated using Equations (A.1) and (A.2).

The desired look angle rates, ȧzd and ėld, must be chosen such that the aircraft’s

rotation rates resolved in the y and z components of the antenna Body reference frame

are canceled out (Equation (3.16)). Thus, the desired look angle rates are calculated

according to

ėld = −DQ (A.16)

ȧzd = − tan(el)P ′A/CBase −R
′
A/CBase

(A.17)

where P ′A/CBase and R′A/CBase are the aircraft’s rotational velocities resolved in the

antenna Base x and z axes [4]. Equation (A.18) shows the calculation of P ′A/CBase ,

Q′A/CBase , and R′A/CBase which is an intermediate step not explicitly shown in equation

(3.16)
P ′A/C

Q′A/C

R′A/C

Base

=

cos(az) sin(az) 0

− sin(az) cos(az) 0

0 0 1

Pa/c

Qa/c

Ra/c

Aircraft

(A.18)

133

A.3 Keplar2RRR.m

function [R, V, iter] = Kepler2RRR (sma, ecc, inc, asc, per, anom, anomType
, t)
% Misha Ivanov
% MIT LL, Grp 64
% 5 June 2006

% Given the Keplerian Elements and some time, t, this function calculates
% the Range and Velocity.
%
% use: [R, V] = Kepler2RRR (sma, ecc, inc, asc, per, anom, anomType, t)
%
% sma (m) - Semi-Major Axis, size of orbit
% ecc (ratio) - Eccentricity, shape of orbit (0<=ecc<1)
% inc (deg) - Inclination, defines orbital plane
% asc (deg) - Right Ascension of Ascending Node, defines orbital plane
% per (deg) - Arugment of Perigee, defines orbit in plane
% anom (deg) - Anomaly, satellite’s position in orbit
% anomType - Mean(1), True(2, default), Eccentric(3)
% t (sec) - point in time to determine output values (default = 0)

% reference - Orbital Mechanics (Chobotov), p.60-61

% edited line 66-EM

% Error Checking
if (nargin < 6)

error(’6 Input Arugments needed’);
elseif (nargin == 6)

anomType = 2;
t = 0;

elseif (nargin == 7)
t = 0;

end

if ((ecc>=1) || (ecc<0))
error(’ecc out of range, 0<=ecc<1’);

end

format long g;

% Scientific Constants
mu = 3.986008 * 10^14; % Earth Gravitational Constant

% Init
err = 10^-16;

% Convert Mean anomaly
if (anomType == 1)

[E,T] = convertMeanAnomaly(anom, ecc);
[x, y, z, x1, y1, z1] = Clas2CartT(sma, ecc, inc, asc, per, T);

elseif (anomType == 2)
[x, y, z, x1, y1, z1] = Clas2CartT(sma, ecc, inc, asc, per, anom);

else

134

[x, y, z, x1, y1, z1] = Clas2CartE(sma, ecc, inc, asc, per, anom);
end

r0 = [x y z];
dot(r0,r0);
V0 = [x1 y1 z1];

% Find X corresponding to t
r0norm = norm(r0);
V0norm = norm(V0);

deltaT = t;

a = mu/(2*mu/r0norm - V0norm^2);
if (a>0)

P = 2*pi*sqrt(a^3/mu);
deltaT = deltaT - fix(abs(deltaT)/P)*P;

end

X = sqrt(mu)*deltaT/abs(a);

deltaX = sqrt(a*err) + 1;
iter = 0;

while (abs(deltaX^2/a) >= err)
Z = X^2/a;
if (Z==0)

C = 1/2;
S = 1/6;

else
C = (1-cos(sqrt(Z)))/Z;
S = (sqrt(Z)-sin(sqrt(Z)))/sqrt(Z^3);

end
% C = 1/2 - Z/24 + Z^2/720 - Z^3/40320 % approx
% S = 1/6 - Z/120 + Z^2/5040 - Z^3/362880 % approx

f0 = (1-r0norm/a)*S*X^3 + r0*V0’*C*X^2/sqrt(mu) + r0norm*X - t*sqrt(mu);
f1 = C*X^2 + r0*V0’*(1-S*Z)*X/sqrt(mu) + r0norm*(1-C*Z);
f2 = (1-r0norm/a)*(1-S*Z)*X + r0*V0’*(1-C*Z)/sqrt(mu);

gamma = 2*sqrt(4*f1^2 - 5*f0*f2);
gamma = abs(gamma);
if (f1<0)

gamma = -gamma;
end

deltaX = 5*f0/(f1+gamma);

X = X - deltaX;
iter = iter+1;

end

iter;

r = r0*V0’*(1-S*Z)*X/sqrt(mu) + r0norm*(1-C*Z) + C*X^2;

% Find r,V in terms of X,r0,V0
f = 1 - (X^2)*C/r0norm;

135

g = t - (X^3)*S/sqrt(mu);
f1 = sqrt(mu)*X*(S*Z-1)/(r*r0norm);
g1 = 1 - (X^2)*C/r;

R = f*r0 + g*V0;
dot(R,R);

V = f1*r0 + g1*V0;

% f
% g
% f1
% g1
% r

end

A.4 basemotionlatlongalt2ECINAVDATA.m

function [termpos,termvel,localsidereal,latdot,longdot,altdot] =
basemotionlatlongalt2ECINAVDATA(t, lat, long, alt, YR, MO, DY, Ndot, Edot,
altdot)
%Eric Marsh
%11 June 2007
%Reference Chobotov, p. 75-76, Montenbruck, p 189
%inputs:
%t (sec)= current time since midnight of the current day
%lat= geodetic lattitude in deg
%long= geodetic long. in deg (east longitude)
%alt= height above sea level (ft)
%YR= year (e.g., 1989)
%MO= month (1 for Jan., 2 for Feb. etc)
%DY= day of the month
%Ndot= North velocity (m/s)
%Edot= East velocity (m/s)
%altdot= vertical velocity (m/s) (positive is "upward" change)

%argument check to see if terminal is moving or not
if (nargin==7)

latdot=0;
longdot=0;
altdot=0;

end
%error check
if (lat < -90 || lat > 90)

error(’lat must be between -90 and 90’)
elseif (long < 0 || long > 360)

error(’long must be between 0 and 360 (pos in east dir)’)
end

%constants
f=1/298.257223563; %see montenbruck p 189
aearth=6378137; %m

136

wemin=0.2506844537; %earth’s rotation deg/min
werad=wemin*unitsratio(’rad’,’deg’)/60; %earth’s rotation rad/sec
we=wemin/60; %earth’s rotation in deg/sec

%time calculations
alphamidnight=greenwichmidnight(YR,MO,DY); %greenwich angle at midnight
%of sim day
localsidereal=mod(long+alphamidnight+we*(t),360); %local sidereal time
%angle at time ’t’

%convert inputs
lat=lat*unitsratio(’rad’,’deg’);
localsidereal=localsidereal*unitsratio(’rad’,’deg’);
alt=alt*unitsratio(’m’,’ft’);
%altdot=altdot*unitsratio(’m’,’ft’); %m/s

%calculate terminal ECI coords (position vector and velocity vector)

%%%%%%%%%%%%%%Method derived from Montenbruck p 188)%%%%%%%%%%%%%%%%%%%%%
N=aearth/sqrt(1-f*(2-f)*sin(lat)^2);
x=(N+alt)*cos(lat)*cos(localsidereal);
y=(N+alt)*cos(lat)*sin(localsidereal);
z=((1-f)^2*N+alt)*sin(lat);
termpos=[x y z]; %row of termpos vector gives x,y,z coord

%calculate velocity vector:
%need latdot, longdot, altdot at every time
latdot=Ndot*(1/norm(termpos)); %North velocity to latdot (rad/s) conversion
s=cos(lat)*norm(termpos);
longdot=Edot*(1/s); %East velocity to longdot (rad/s) conversion

Ndot=-(aearth/2)*(1-2*f*(sin(lat)^2)+f^2*sin(lat)^2)^(-3/2)*(-4*f*sin(lat)
*cos(lat)*latdot+2*f^2*sin(lat)*cos(lat)*latdot);
localsiderealdot=werad+longdot;
xdot=Ndot*cos(lat)*cos(localsidereal)-N*sin(lat)*latdot*cos(localsidereal)
-N*cos(lat)*sin(localsidereal)*localsiderealdot+altdot*cos(lat)
*cos(localsidereal)-alt*sin(lat)*latdot*cos(localsidereal)-alt*cos(lat)
*sin(localsidereal)*localsiderealdot;
ydot=Ndot*cos(lat)*sin(localsidereal)-N*sin(lat)*latdot*sin(localsidereal)
+N*cos(lat)*cos(localsidereal)*localsiderealdot+altdot*cos(lat)
*sin(localsidereal)-alt*sin(lat)*latdot*sin(localsidereal)+alt
*cos(lat)*cos(localsidereal)*localsiderealdot;
zdot=((1-f)^2*Ndot*sin(lat)+(1-f)^2*N*cos(lat)*latdot+altdot*sin(lat)+alt
*cos(lat)*latdot);
termvel=[xdot ydot zdot];
%%%

137

138

Appendix B

Open-Loop Controller Simulations

The following code was written using the MATLAB programming language, Version

7.4.0.287. It was run on a Dell laptop computer with a Pentium 4 processor, 2.13

GHz processor, and 2 GB of RAM using Microsoft Windows XP Professional, Version

2002 Service Pack 2.

B.1 controller.m

%Eric Marsh
%MIT LL, Grp 61
%February, 2008

%controller.m

%Description: This m-file develops the LQG controller for a nominal
%Antenna Positioner System and simulates the performance using lsim. The
%paramters needed for the Simulink model, ‘APSsimulinkmdl.mdl’ are included
%at the end of this m-file.

clear all;
close all;
load Afilt;
load Bfilt;

%plot PSD of filter
sys=ss(Afilt,Bfilt,1,0);
[mag,phase,w] = bode(sys);
mag=squeeze(mag);
db=20*log(mag);
%figure;semilogx(w,db);xlabel(’freq (rad/s)’); ylabel(’DB mag’);
%title(’Filter PSD’);

%inertia in el axis:

139

Iyy=635;%units are in^2*lb
Iyy=Iyy*0.4535924*0.0254^2;%convert to m^2*kg
b=1/Iyy;

%motor constants:
kaz=18.7; %oz-in/amp
%kbaz=38.4; %V/10^3*RPM
kaz=kaz*0.007061552; %N-m/amp
%kbaz=kbaz*60/(2*pi)*10^-3; %Volts/(rad/sec)
kbaz=kaz;
raaz=4.84; %ohms
kel=kaz;
kbel=kbaz;
rael=raaz;

%gearing:
n=0.1; %n=r1/r2=radius of small gear/radius of large gear (m)

%reference input parameter
N=1/0.005519215703220;

%state deriv left mult matrix:
I=[Iyy 0 -Iyy; 0 1 0; 0 0 1];

A=zeros(3,3);
A(1,1)=-kel*kbel/rael*(1/n^2);
A(1,3)=kaz*kbaz/raaz*(1/n^2);
A(2,1)=1;
A(3,3)=Afilt;
A=inv(I)*A;

Bu=zeros(3,1);
Bu(1)=kel/rael*(1/n);
Bu=inv(I)*Bu;

Bw=eye(3);
Bw(3,3)=Bfilt;
Bw=inv(I)*Bw;

Cy=[1 0 0; 0 1 0]; %sensing both velocity and position
%Cy=[1 0 1]; %sensing just velocitcy Cy=[0 1 0]; %sensing just pos

%form controllability, observability matrices. can then check rank to see
%if system is uncontrollable or unobservable
ssol=ss(A,Bu,Cy,0);
ctol=ctrb(ssol);
obol=obsv(ssol);

%LQR for control gains:
% bryson’s rule for weighting Rxx: simply 1/(xmax)^2
rxx(1)=1/(20*pi/180)^2;
rxx(2)=1/(.01*pi/180)^2;
rxx(3)=0; %zero weighting on filter state
Rxx=diag(rxx);
%Rxx=Rxx*10^9;
Ruu=10^3; %control weighting
[K,S,E]=lqr(A,Bu,Rxx,Ruu);

140

%LQR Sim
Ts=0.01; %sim step size
tfinal=100; %sim end time
t=0:Ts:tfinal;
x0=[0;0;0]; %begin sim with a 3 deg/sec initial condition on velocity
rho2=10^-7; %small amount of process noise (power spect. density??)
Rww=diag([rho2,rho2,1]);%white noise input with unit variance on the filter
%state
w1=sqrt(Rww(1,1))*randn(length(t),1);
w2=sqrt(Rww(2,2))*randn(length(t),1);
Dp=sqrt(Rww(3,3)/Ts)*randn(length(t),1); %white noise disturbance input
%to filter (divide by sqrt(Ts) to make pwr spectral density equal to 1)

Alqr=A-Bu*K;
Bwlqr=[0;0;Bfilt];
[y,x]=lsim(Alqr,Bw,Cy,0,[w1,w2,Dp],t,x0);
% [y,x]=lsim(Alqr,Bwlqr,Cy,0,[Dp],t,x0);
y=y*unitsratio(’deg’,’rad’);

%plots
% figure;plot(t,y(:,1)); xlabel(’sim time (s)’); ylabel(’inertial rate
% (deg/sec)’); legend(’antpitchdot’); title(’LQR with dist FF’);
% figure;plot(t,y(:,2)); xlabel(’sim time (s)’); ylabel(’inertial angle
% (deg)’); legend(’antpitch’); title(’LQR with dist FF’);

%LQE for estimator gains:
Rvv=eye(2);
Rvv(1,1)=10^-8; %sensor weighting on gyro
Rvv(2,2)=10^-6; %sensor weighting on position sensor
f=1;
Rvv=f*Rvv;
[L,Q,F]=lqr(A’,Cy’,Bw*Rww*Bw’,Rvv);
L=L’;

%LQG sim: (simulate plant and estimator together) see attached block
%diagram
Alqg=[A -Bu*K;L*Cy A-Bu*K-L*Cy];
Blqg=[Bw zeros(3,2) Bu*N; zeros(3,3) L Bu*N];
Clqg=[Cy zeros(2,3)]; %for measuring both velocity and position
Dlqg=zeros(2,6); % dims are rows of Clqg x cols of Blqg
syslqg=ss(Alqg,Blqg,Clqg,Dlqg);

x0lqg=[x0; zeros(3,1)];
v1=sqrt(10^-8)*randn(length(t),1); %white velocity sensor noise
v2=sqrt(10^-6)*randn(length(t),1); %white position sensor noise
%ref(:,1)=zeros(length(t),1);
ref(:,1)=[zeros(101,1);ones(9900,1)*1*pi/180]; %step response

% ref(:,1)=[zeros(101,1);ones(9900,1)*0.16*pi/180];
[ylqg,xlqg]=lsim(Alqg,Blqg,Clqg,Dlqg,[w1,w2,Dp,v1,v2,ref],t,x0lqg);
%torque calcs:
ulqgel(:,1)=-[zeros(1,3) K]*xlqg’+N*ref’; %input voltage to el motor
ilqgel=ulqgel/rael-(kbel/rael)*1/n*xlqg(:,1);
torqueel=kel*ilqgel;
%convert from N-m to oz-in:
torqueel=torqueel*1/0.007061552;

141

ylqg=ylqg*unitsratio(’deg’,’rad’); %convert sim outputs to rad/sec and rad

%plots:
% figure;plot(t,ylqg(:,1));hold all; plot(t,xlqg(:,4)*180/pi);hold off;
% xlabel(’sim time (s)’); ylabel(’angle rate (deg/sec)’);
% legend(’antpitchdot’,’Qdot estimate’); title(’LQG sim’);
% figure;plot(t,ylqg(:,2));hold all; plot(t,xlqg(:,5)*180/pi);hold off;
% xlabel(’sim time (s)’); ylabel(’angle (deg)’); legend(’antpitch’,’q
% estimate’); title(’LQG sim’); figure;plot(t,xlqg(:,3)*180/pi);hold all;
% plot(t,xlqg(:,6)*180/pi); hold off; xlabel(’sim time (s)’); ylabel(’dist
% rate (deg/sec)’); legend(’antpitchdist’,’antpitchdist estimate’);
% title(’dist input’); figure;plot(t,torqueel);hold all;plot([0 max(t)],[30
% 30],’m--’); plot([0 max(t)],[-30 -30],’m--’);hold off; xlabel(’sim time
% (s)’); ylabel(’torque (oz-in)’); legend(’elevation torque’); title(’El
% Torque v. Time’); figure;bode(syslqg);
%
% %simulink params Ixx=1217; %units are in^2*lb
% Ixx=Ixx*0.4535924*0.0254^2;%convert to m^2*kg a=1/Ixx; Izz=Iyy; c=1/Izz;
% XEL_Gyro_BW=10000; %bandwidth in hz XEL_Gyro_Bias=0; %rad/sec
% XEL_Gyro_Noise=10^-8; %noise = avg power or variance in (rad/sec)^2
% XEL_IMU_Bias=0; %rad/sec XEL_IMU_Error=10^-6; %noise = avg power or
% variance in (rad/sec)^2 XEL_IMU_BW=10000; %bandwidth in hz
% XEL_IMU_sample_time=1/10; XEL_Veh_Pos_Command_Rate=1/1000;
% EL_Gyro_BW=10000; %bandwidth in hz EL_Gyro_Bias=0; %rad/sec
% EL_Gyro_Noise=10^-8; %noise = avg power or variance in (rad/sec)^2
% EL_IMU_Bias=0; %rad/sec EL_IMU_Error=10^-6; %noise = avg power or
% variance in (rad/sec)^2 EL_IMU_BW=10000; %bandwidth in hz
% EL_IMU_sample_time=1/10; EL_Veh_Pos_Command_Rate=1/1000;
% el_motor_noloadspeed=5500*2*pi/60; %no load speed in rad/sec
% el_motor_stall_torque=30*0.007061552; %stall torque in N-m
% az_motor_noloadspeed=5500*2*pi/60; %no load speed in rad/sec
% az_motor_stall_torque=30*0.007061552; %stall torque in N-m

142

B
.2

A
P

S
S
im

u
li
n
k

M
o
d
e
l

F
ig

u
re

B
-1

:
N

om
in

al
A

P
S

P
ed

es
ta

l
F

ee
d
b
ac

k
C

on
tr

ol
le

r
S
im

u
li
n
k

M
o
d
el

(R
o
ot

L
ev

el
)

143

F
ig

u
re

B
-2

:
E

st
im

at
or

D
y
n
am

ic
s

S
u
b
sy

st
em

144

F
ig

u
re

B
-3

:
A

ir
cr

af
t

R
at

e
D

is
tu

rb
an

ce
In

p
u
t

an
d

M
ea

su
re

d
A

ir
cr

af
t

P
os

it
io

n
S
u
b
sy

st
em

145

F
ig

u
re

B
-4

:
A

n
te

n
n
a

R
ol

l
D

y
n
am

ic
s

S
u
b
sy

st
em

146

F
ig

u
re

B
-5

:
L

in
ea

r
T

or
q
u
e-

S
p

ee
d

C
u
rv

e
fo

r
C

M
C

S
er

ie
s

21
00

S
er

vo
-M

ot
or

S
u
b
sy

st
em

.
M

o
d
el

C
ou

rt
es

y
of

M
.

B
ou

le
t,

M
IT

L
L

,
G

ro
u
p

76
.

147

Figure B-6: KVH Gyro Sensor Subsystem. Model Courtesy of M. Boulet, MIT LL,
Group 76.

Figure B-7: IMU Sensor Subsystem. Model Courtesy of M. Boulet, MIT LL, Group
76.

148

Appendix C

Step-tracking Simulations

The following code was written using the MATLAB programming language, Version

7.4.0.287. It was run on a Dell laptop computer with a Pentium 4 processor, 2.13

GHz processor, and 2 GB of RAM using Microsoft Windows XP Professional, Version

2002 Service Pack 2.

C.1 spiralsearch.m

%Eric Marsh
%8 Jan 08
%MIT LL, GRP 61

%Spiral Search Method
%Description:
%This step-tracking simulation accomplishes spatial pull-in from the
%starting points defined in testvec.mat. The cost function is defined in
%30nov.mat.

%Spiral Search (SS) method

clear all
%close all load an antenna pattern *.mat file from genantennapattern.m
load 30nov.mat
load testvec.mat

soln=zeros(7,1000);

for mciter=1:1000
tic

xelpt=testvec(1,mciter); %initial guess

149

elpt=testvec(2,mciter); %initial guess
deltax=[0;0];
x=[xelpt;elpt];
xnorm=0;
deltaxnorm=0;
xelvar=.0004; %deg^2
elvar=.0004; %deg^2
ntsamps=10; %number of time samples to ensure normal distribution in xel
%and el
interp_method=’linear’;
radius=1.4*2;
totaliter=0;
funcevals=0;
F=zeros(7,ntsamps);
coords=zeros(2,7);
maxfuncevals=false;
satvel=0.0005; %deg/sec
satvelx=sqrt(satvel^2/2);
satvely=satvelx;
samplewaittime=0.25; %sec
sattravelx=0;
sattravely=0;
xnormfromsat=0;
satpos=0;
zerosatvel=false;

for i=1:9
radius=radius*.5;
iter=1;
isctrmaxpwr=false;
%F(1,2:7)=0;
F(2:7,:)=0;

while isctrmaxpwr==false
xnorm(iter+totaliter)=norm(x(:,iter+totaliter));
satpos(iter+totaliter)=norm([sattravelx;sattravely]);
xnormfromsat(iter+totaliter)=abs(xnorm(iter+totaliter)-
satpos(iter+totaliter));

if iter==1;
coords(:,1)=[xelpt;elpt];
end
coords(:,2)=coords(:,1)+[0;radius];
coords(:,3)=coords(:,1)+[radius;radius/2];
coords(:,4)=coords(:,1)+[radius;-radius/2];
coords(:,5)=coords(:,1)+[0;-radius];
coords(:,6)=coords(:,1)+[-radius;-radius/2];
coords(:,7)=coords(:,1)+[-radius;radius/2];

if zerosatvel==false || iter==1 && i==1
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(1,i)=getsignalpower(coords(1,1)+linnoisexel+sattravelx,
coords(2,1)+linnoiseel+sattravely,meshsize,xel,el,gridpow2,
interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

150

end
F(1,1)=mean(F(1,:));
F(1,1)=roundn(F(1,1),-1); %round to nearest tenths
funcevals=funcevals+1;

%F(1)=getsignalpower(coords(1,1),coords(2,1),meshsize,xel,el,gridpow2,i
%nterp_method); funcevals=funcevals+1;
end
if zerosatvel==false || F(2,1)==0
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(2,i)=getsignalpower(coords(1,2)+linnoisexel+sattravelx,
coords(2,2)+linnoiseel+sattravely,meshsize,xel,el,gridpow2,
interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(2,1)=mean(F(2,:));
F(2,1)=roundn(F(2,1),-1); %round to nearest tenths
funcevals=funcevals+1;

%F(2)=getsignalpower(coords(1,2),coords(2,2),meshsize,xel,el,gridpow2,i
%nterp_method); funcevals=funcevals+1;
end
if zerosatvel==false || F(3,1)==0
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(3,i)=getsignalpower(coords(1,3)+linnoisexel+sattravelx,
coords(2,3)+linnoiseel+sattravely,meshsize,xel,el,gridpow2,
interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(3,1)=mean(F(3,:));
F(3,1)=roundn(F(3,1),-1); %round to nearest tenths
funcevals=funcevals+1;

%F(3)=getsignalpower(coords(1,3),coords(2,3),meshsize,xel,el,gridpow2,i
%nterp_method); funcevals=funcevals+1;
end
if zerosatvel==false || F(4,1)==0
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(4,i)=getsignalpower(coords(1,4)+linnoisexel+sattravelx,
coords(2,4)+linnoiseel+sattravely,meshsize,xel,el,gridpow2,
interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(4,1)=mean(F(4,:));
F(4,1)=roundn(F(4,1),-1); %round to nearest tenths
funcevals=funcevals+1;
%F(4)=getsignalpower(coords(1,4),coords(2,4),meshsize,xel,el,gridpow2,i
%nterp_method); funcevals=funcevals+1;

151

end
if zerosatvel==false || F(5,1)==0
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(5,i)=getsignalpower(coords(1,5)+linnoisexel+sattravelx,
coords(2,5)+linnoiseel+sattravely,meshsize,xel,el,gridpow2,
interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(5,1)=mean(F(5,:));
F(5,1)=roundn(F(5,1),-1); %round to nearest tenths
funcevals=funcevals+1;
%F(5)=getsignalpower(coords(1,5),coords(2,5),meshsize,xel,el,gridpow2,i
%nterp_method); funcevals=funcevals+1;
end
if zerosatvel==false || F(6,1)==0
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(6,i)=getsignalpower(coords(1,6)+linnoisexel+sattravelx,
coords(2,6)+linnoiseel+sattravely,meshsize,xel,el,gridpow2,
interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(6,1)=mean(F(6,:));
F(6,1)=roundn(F(6,1),-1); %round to nearest tenths
funcevals=funcevals+1;
%F(6)=getsignalpower(coords(1,6),coords(2,6),meshsize,xel,el,gridpow2,i
%nterp_method); funcevals=funcevals+1;
end
if zerosatvel==false || F(7,1)==0
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(7,i)=getsignalpower(coords(1,7)+linnoisexel+sattravelx,
coords(2,7)+linnoiseel+sattravely,meshsize,xel,el,gridpow2,
interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(7,1)=mean(F(7,:));
F(7,1)=roundn(F(7,1),-1); %round to nearest tenths
funcevals=funcevals+1;
%F(7)=getsignalpower(coords(1,7),coords(2,7),meshsize,xel,el,gridpow2,i
%nterp_method); funcevals=funcevals+1;
end

[C,I]=min(F(:,1));

Fcent=F(I,1);

if abs(satvel) < 10000*eps %saying if satvel is zero, can save some
%function evaluations
zerosatvel=true;

152

if I==2
F(4,1)=F(3,1);
F(5,1)=F(1,1);
F(6,1)=F(7,1);
F(2,1)=0;
F(3,1)=0;
F(7,1)=0;

elseif I==3
F(5,1)=F(4,1);
F(6,1)=F(1,1);
F(7,1)=F(2,1);
F(2,1)=0;
F(3,1)=0;
F(4,1)=0;

elseif I==4
F(6,1)=F(5,1);
F(7,1)=F(1,1);
F(2,1)=F(3,1);
F(3,1)=0;
F(4,1)=0;
F(5,1)=0;

elseif I==5
F(7,1)=F(6,1);
F(2,1)=F(1,1);
F(3,1)=F(4,1);
F(4,1)=0;
F(5,1)=0;
F(6,1)=0;

elseif I==6
F(2,1)=F(7,1);
F(3,1)=F(1,1);
F(4,1)=F(5,1);
F(5,1)=0;
F(6,1)=0;
F(7,1)=0;

elseif I==7
F(3,1)=F(2,1);
F(4,1)=F(1,1);
F(5,1)=F(6,1);
F(2,1)=0;
F(6,1)=0;
F(7,1)=0;

else
isctrmaxpwr=true;

end
elseif I ==1

isctrmaxpwr=true;
end

coords(:,1)=coords(:,I);
F(1,1)=Fcent;

x(:,iter+1+totaliter)=coords(:,1);
deltax(:,iter+totaliter)=x(:,iter+1+totaliter)-x(:,iter+totaliter);
deltaxnorm(:,iter+totaliter)=norm(deltax(:,iter+totaliter));
iter=iter+1;
if funcevals > 500

maxfuncevals=true;
warning(’max number of function evaluations reached’)

153

break
end

end
xelpt=coords(1,1);
elpt=coords(2,1);
totaliter=totaliter+iter-1;
if maxfuncevals==true %break for loop if maxfuncevals is true

break
end

end

%calculate approximate time
if satvel > eps*10000 %if satvel isn’t zero

time=satpos(end)/satvel;
else

time=0;
end
soln(1:2,mciter)=[x(1,end);x(2,end)];
soln(3,mciter)=totaliter;
simtime=toc;
soln(4,mciter)=simtime;
soln(5,mciter)=funcevals;
soln(6,mciter)=xnorm(end);
soln(7,mciter)=satpos(end);
soln(8,mciter)=xnormfromsat(end);
soln(9,mciter)=time;

end

C.2 modifiedNewton.m

%Eric Marsh 18 Dec 07

%Modified Newton’s Method
%Description:
%This step-tracking simulation accomplishes spatial pull-in from the
%starting points defined in testvec.mat. The cost function is defined in
%30nov.mat.

clear all
%close all load an antenna pattern *.mat file from genantennapattern.m
load 30nov.mat
load testvec.mat

soln=zeros(7,1000);
mainlobejump=zeros(1,1000);
bracketminfalse=zeros(1,1000);
gradfalloffcount=zeros(1,1000);

for mciter=1:1000
tic
xelpt=testvec(1,mciter); %initial guess
elpt=testvec(2,mciter); %initial guess

154

deljstep=.16; %(deg) this is ~3* the 3sigma on the 1-d pointing error
%distributions (also good for lin interp of ant pattern and machine errors)
deltax=[0;0];
x=[xelpt;elpt];
xnorm=0;
deltaxnorm=0;
iter=1;
epsilon=0.63; %looser?
gradient=[10^2;10^2];
hessian=zeros(2,2);
interp_method=’linear’;
R=zeros(2,2);
funcevals=0;
xelvar=.0004; %deg^2
elvar=.0004; %deg^2
ntsamps=10; %number of time samples to ensure normal distribution in xel
%and el
Fminjump=zeros(1,ntsamps);
gradswitch=epsilon*10;
linsearchparam=0.5;
linstepcount=0;
mincheck=0;
mincheckthreshold=4;
hessianhat=zeros(2,2);
directedgrad=0;
mincheckvec=0;
gradfalloff=0;
satvel=0.0005; %deg/sec
satvelx=sqrt(satvel^2/2);
satvely=satvelx;
samplewaittime=0.25; %sec
sattravelx=0;
sattravely=0;
xnormfromsat=0;
satpos=0;

% set terminate = false
terminate=false;
% while terminate = false
while terminate==false
% set compute alpha*pk = true
computedeltax=true;
%perform function/gradient evaluations at xk: initializations
xnorm(iter)=norm(x(:,iter));
satpos(iter)=norm([sattravelx;sattravely]);
xnormfromsat(iter)=abs(xnorm(iter)-satpos(iter));
F=zeros(13,ntsamps);
g=zeros(2,5);
G=zeros(2,2);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%perform function evals:%%%%%%%%%%%%%%%%%%%%%%%
noisexel=randn(14,ntsamps)*sqrt(xelvar); %14th pt is for jump condition
noiseel=randn(14,ntsamps)*sqrt(elvar);

%F9,F10,F11 not needed

if Fminjump(1)==0

155

computeF1=true;
else

computeF1=false;
end
%%%F1%%%
if computeF1==true
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(1,i)=getsignalpower(xelpt+linnoisexel+sattravelx,elpt+linnoiseel+
sattravely,meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(1,1)=mean(F(1,:));
F(1,1)=roundn(F(1,1),-1); %round to nearest tenths
funcevals=funcevals+1;
else

F(1,1)=Fminjump(1);
end

%%%F2%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(2,i)=getsignalpower(xelpt+linnoisexel+deljstep+sattravelx,elpt+
linnoiseel+sattravely,meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(2,1)=mean(F(2,:));
F(2,1)=roundn(F(2,1),-1); %round to nearest tenths
funcevals=funcevals+1;

%%%F5%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(5,i)=getsignalpower(xelpt+linnoisexel+sattravelx,elpt+linnoiseel+
deljstep+sattravely,meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(5,1)=mean(F(5,:));
F(5,1)=roundn(F(5,1),-1); %round to nearest tenths
funcevals=funcevals+1;

%%%F6%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(6,i)=getsignalpower(xelpt+linnoisexel+deljstep+sattravelx,elpt+
linnoiseel+deljstep+sattravely,meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(6,1)=mean(F(6,:));
F(6,1)=roundn(F(6,1),-1); %round to nearest tenths

156

funcevals=funcevals+1;

%%%F7%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(7,i)=getsignalpower(xelpt+linnoisexel+2*deljstep+sattravelx,elpt+
linnoiseel+sattravely,meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(7,1)=mean(F(7,:));
F(7,1)=roundn(F(7,1),-1); %round to nearest tenths
funcevals=funcevals+1;

%%%F13%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(13,i)=getsignalpower(xelpt+linnoisexel+sattravelx,elpt+linnoiseel+
2*deljstep+sattravely,meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(13,1)=mean(F(13,:));
F(13,1)=roundn(F(13,1),-1); %round to nearest tenths
funcevals=funcevals+1;

if iter==1 || norm(gradient(:,iter-1)) < gradswitch
%%%F3%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(3,i)=getsignalpower(xelpt+linnoisexel+sattravelx,elpt+linnoiseel-
deljstep+sattravely,meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(3,1)=mean(F(3,:));
F(3,1)=roundn(F(3,1),-1); %round to nearest tenths
funcevals=funcevals+1;

%%%F4%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(4,i)=getsignalpower(xelpt+linnoisexel-deljstep+sattravelx,elpt+
linnoiseel+sattravely,meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(4,1)=mean(F(4,:));
F(4,1)=roundn(F(4,1),-1); %round to nearest tenths
funcevals=funcevals+1;

%%%F8%%%
for i=1:ntsamps

157

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(8,i)=getsignalpower(xelpt+linnoisexel+deljstep+sattravelx,elpt+
linnoiseel-deljstep+sattravely,meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(8,1)=mean(F(8,:));
F(8,1)=roundn(F(8,1),-1); %round to nearest tenths
funcevals=funcevals+1;

%%%F12%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(12,i)=getsignalpower(xelpt+linnoisexel-deljstep+sattravelx,elpt+
linnoiseel+deljstep+sattravely,meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(12,1)=mean(F(12,:));
F(12,1)=roundn(F(12,1),-1); %round to nearest tenths
funcevals=funcevals+1;
end
Fminjump=zeros(1,ntsamps);

%%%%old way%%
% if Fminjump(1)==0
% computeF1=true;
% else
% computeF1=false;
% end for i=1:ntsamps if computeF1 == true
% F(1,i)=getsignalpower(xelpt+noisexel(1,i),elpt+noiseel(1,i),meshsize,xel,
% el,gridpow2,interp_method); else
% F(1,i)=Fminjump(1);
% end
% F(2,i)=getsignalpower(xelpt+noisexel(2,i)+deljstep,elpt+noiseel(2,i),mesh
% size,xel,el,gridpow2,interp_method);
% F(5,i)=getsignalpower(xelpt+noisexel(5,i),elpt+noiseel(5,i)+deljstep,mesh
% size,xel,el,gridpow2,interp_method);
% F(6,i)=getsignalpower(xelpt+noisexel(6,i)+deljstep,elpt+noiseel(6,i)+delj
% step,meshsize,xel,el,gridpow2,interp_method);
% F(7,i)=getsignalpower(xelpt+noisexel(7,i)+2*deljstep,elpt+noiseel(7,i),me
% shsize,xel,el,gridpow2,interp_method);
% F(13,i)=getsignalpower(xelpt+noisexel(13,i),elpt+noiseel(13,i)+2*deljstep
% ,meshsize,xel,el,gridpow2,interp_method); if iter==1 ||
% norm(gradient(:,iter-1)) < gradswitch
% F(3,i)=getsignalpower(xelpt+noisexel(3,i),elpt+noiseel(3,i)-deljstep,mesh
% size,xel,el,gridpow2,interp_method);
% F(4,i)=getsignalpower(xelpt+noisexel(4,i)-deljstep,elpt+noiseel(4,i),mesh
% size,xel,el,gridpow2,interp_method);
% F(8,i)=getsignalpower(xelpt+noisexel(8,i)+deljstep,elpt+noiseel(8,i)-delj
% step,meshsize,xel,el,gridpow2,interp_method);
% F(12,i)=getsignalpower(xelpt+noisexel(12,i)-deljstep,elpt+noiseel(12,i)+d
% eljstep,meshsize,xel,el,gridpow2,interp_method); end end for i=1:13
% %average the signal to noise measurements and store in first column of F

158

% F(i,1)=mean(F(i,:)); end Fminjump=zeros(1,ntsamps); F=roundn(F,-1);
% %round to nearest tenths
%calculate number of points looked at (function evaluations):
% if computeF1==true
% if iter==1 || norm(gradient(:,iter-1)) < gradswitch
% funcevals=funcevals+10;
% else
% funcevals=funcevals+6;
% end
% else
% if iter==1 || norm(gradient(:,iter-1)) < gradswitch
% funcevals=funcevals+9;
% else
% funcevals=funcevals+5;
% end
% end
%%%

%Form gradient vectors g3,g4 not needed
if iter==1 || norm(gradient(:,iter-1)) < gradswitch

g(:,1)=[(F(2,1)-F(4,1))/(2*deljstep);(F(5,1)-F(3,1))/(2*deljstep)];
gradient(:,iter)=g(:,1);
g(:,2)=[(F(7,1)-F(1,1))/(2*deljstep);(F(6,1)-F(8,1))/(2*deljstep)];
%g(:,3)=[(F(8,1)-F(10,1))/(2*deljstep);(F(1,1)-F(9,1))/(2*deljstep)];
%g(:,4)=[(F(1,1)-F(11,1))/(2*deljstep);(F(12,1)-F(10,1))/(2*deljstep)];
g(:,5)=[(F(6,1)-F(12,1))/(2*deljstep);(F(13,1)-F(1,1))/(2*deljstep)];

else
g(:,1)=[(F(2,1)-F(1,1))/(deljstep);(F(5,1)-F(1,1))/(deljstep)];
gradient(:,iter)=g(:,1);
fwddifcount(iter)=1;
g(:,2)=[(F(7,1)-F(2,1))/(deljstep);(F(6,1)-F(2,1))/(deljstep)];
g(:,5)=[(F(6,1)-F(5,1))/(deljstep);(F(13,1)-F(5,1))/(deljstep)];

end

%form hessian (G) matrix
G(:,1)=(g(:,2)-g(:,1))/(deljstep);
G(:,2)=(g(:,5)-g(:,1))/(deljstep);
G=.5*(G+G’);
hessian(:,:,iter)=G;
%modified cholesky factorization of Hessian
L=eye(2);
D=zeros(2,2);
R=zeros(2,2);
delta=10; %50; %10^1 good? %effectively adds more damping to lin search
for j=1:2

if j==1
D(j,j)=G(j,j);
if D(j,j)<delta

R(j,j)=(delta-D(j,j));
D(j,j)=R(j,j)+D(j,j);

end
L(2,j)=G(2,j)/D(j,j);

elseif j==2
D(j,j)=G(j,j)-D(1,1)*(L(j,1))^2;
if D(j,j)<delta

R(j,j)=(delta-D(j,j));

159

D(j,j)=R(j,j)+D(j,j);
end

end
end
%%%%%%%%
hessianhat(:,:,iter)=L*D*L’;
t(:,iter)=L\-gradient(:,iter);
rhs=inv(D)*t(:,iter);

%%%%%%%%%%%%%%%%%%%%%%%%check for local or global min:%%%%%%%%%%%%%%%%%%%%%
% if criteria for minimum = true (small gradient)
if norm(gradient(:,iter)) < epsilon

%check for local min
if (norm(gradient(:,iter))<epsilon) && (R(1,1) > 0 || R(2,2) > 0) %if

%you’re at a weak min (grad small, hessian modified)
V=zeros(2,2);
E=zeros(2,2);
deltaxminjump=zeros(2,1);
jumpxel=0;
jumpel=0;
[V,E]=eig(hessian(:,:,iter));
if V(:,1)’*hessian(:,:,iter)*V(:,1) > V(:,2)’*hessian(:,:,iter)*

V(:,2)
deltaxminjump=V(:,1);

else
deltaxminjump=V(:,2);

end
deltaxminjump=deltaxminjump*1.85; %1.85 comes from averaging
distance between first 4 peaks on ant. pattern
jumpxel=x(1,iter)+deltaxminjump(1);
jumpel=x(2,iter)+deltaxminjump(2);
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
Fminjump(i)=getsignalpower(jumpxel+linnoisexel+sattravelx,
jumpel+linnoiseel+sattravely,meshsize,xel,el,gridpow2,
interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
Fminjump(1)=mean(Fminjump(1,:));
Fminjump=roundn(Fminjump(1),-1); %round to nearest tenths
funcevals=funcevals+1;
if Fminjump(1) > F(1,1) %must check to see you are going in right

%direction on eigenvector
deltax(:,iter)=deltaxminjump*-1; %head the opposite way
Fminjump(1)=0;

else
deltax(:,iter)=deltaxminjump; %you jumped the correct way

end
mincheck=0;

else
deltax(:,iter)=[0;0];
mincheck=mincheck+1;

end
computedeltax=false;

160

if mincheck > mincheckthreshold
%computedeltax=true; %complete one more jump (already evaluated the
%function so might as well)
terminate=true;

end
elseif mincheck > 0 && norm(gradient(:,iter)) > epsilon

computedeltax=true;
mincheck=0;
gradfalloff(iter)=1;

end
mincheckvec(iter)=mincheck;

if computedeltax==true %%%%%%%%%%%if compute alpha*pk = true%%%%%%%%%%%%

%%%%%%%%%compute pk and initial alpha:%%%%%%%%%%%%%%%%%%%%%%
deltax(:,iter)=L’\rhs;
alpha=1;
%limit alpha*pk to a predetermined region of confidence:
if norm(deltax(:,iter))>1.0 %if deltax is outside a "region of trust"

%chosen so if you’re at a max, won’t go over another max (max initial
%step routine will take)
deltax(:,iter)=(deltax(:,iter)/norm(deltax(:,iter)))*.75;

end

%evaluate function at initial alpha=1 value:
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
Falpha(i)=getsignalpower(x(1,iter)+deltax(1,iter)+linnoisexel+
sattravelx,x(2,iter)+deltax(2,iter)+linnoiseel+sattravely,meshsize,xel,
el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
Falpha(1)=mean(Falpha(1,:));
Falpha=roundn(Falpha(1),-1); %round to nearest tenths
funcevals=funcevals+1;

%evaluate point along search direction to approximate gradient at alpha=1
dx1=deltax(1,iter)/norm(deltax(:,iter));
dx2=deltax(2,iter)/norm(deltax(:,iter));
nux=dx1*deljstep;
nuy=dx2*deljstep;
if norm([alpha*deltax(1,iter);alpha*deltax(2,iter)])>=deljstep

if alpha > 0
nu=norm([alpha*deltax(1,iter)-nux;alpha*deltax(2,iter)-nuy])/
norm(deltax(:,iter)); %ensure that nu value will be deljstep away
%from alpha in 1-d

else
nu=-1*norm([alpha*deltax(1,iter)+nux;alpha*deltax(2,iter)+nuy])/
norm(deltax(:,iter));

end
else

if alpha > 0
nu=-1*norm([alpha*deltax(1,iter)-nux;alpha*deltax(2,iter)-nuy])/

161

norm(deltax(:,iter)); %ensure that nu value will be deljstep away
%from alpha in 1-d

else
nu=norm([alpha*deltax(1,iter)+nux;alpha*deltax(2,iter)+nuy])/
norm(deltax(:,iter));

end
end
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
Fnu(i)=getsignalpower(x(1,iter)+nu*deltax(1,iter)+linnoisexel+
sattravelx,x(2,iter)+nu*deltax(2,iter)+linnoiseel+sattravely,meshsize,
xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
Fnu(1)=mean(Fnu(1,:));
Fnu=roundn(Fnu(1),-1); %round to nearest tenths
funcevals=funcevals+1;

%%%%%%%%%%%%%%%%%%%%perform linear search along pk to determine
%%%%%%%%%%%%%%%%%%%%satisfactory alpha %%%%%%%%%%%%%%%%%%%%%%
linsearchconverge=false;
directedgrad(iter)=deltax(:,iter)’*gradient(:,iter);
%if alpha=1 is not satisfactory, perform lin search:
if abs((Falpha-Fnu))/deljstep > abs(-1*linsearchparam*directedgrad(iter))

%Criterion for lin search-(finite difference replaces gradient)- GMW
%p. 102

%Step 1- make sure you have an interval bracketing a minimum:
bracketmin=true;
if F(1,1)<Falpha %look opposite direction to find Fa and a values for

%interval containing minimum
alpha=-1;
bracket_step=1;
Fb=Falpha;
b=1;
Fc=F(1,1);
c=0;
Fa=-10^6;
a=alpha;

while Fa(1) <= Fc
if bracket_step > 1

Fb=Fc;
b=c;
Fc=Fa(1);
c=a;

end
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
Fa(i)=getsignalpower(x(1,iter)+alpha*deltax(1,iter)+
linnoisexel+sattravelx,x(2,iter)+alpha*deltax(2,iter)+
linnoiseel+sattravely,meshsize,xel,el,gridpow2,
interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

162

end
Fa(1)=mean(Fa(1,:));
Fa=roundn(Fa(1),-1); %round to nearest tenths
funcevals=funcevals+1;
a=alpha;
alpha=alpha*2;
bracket_step=bracket_step+1;

if bracket_step > 4
bracketmin=false;
bracketminfalse(mciter)=bracketminfalse(mciter)+1;
warning(’could not bracket minimum for lin search in less
than 4 steps’)
break

end
end

else %continue searching along search direction until a min is
%bracketed- (find b)

alpha=2;
bracket_step=1;
Fc=Falpha;
c=1;
Fa=F(1,1);
a=0;
Fb=-10^6;
b=alpha;

while Fb(1) <= Fc
if bracket_step > 1

Fa=Fc;
a=c;
Fc=Fb(1);
c=b;

end

for i=1:ntsamps
linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
Fb(i)=getsignalpower(x(1,iter)+alpha*deltax(1,iter)+
linnoisexel+sattravelx,x(2,iter)+alpha*deltax(2,iter)+
linnoiseel+sattravely,meshsize,xel,el,gridpow2,
interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
Fb(1)=mean(Fb(1,:));
Fb=roundn(Fb(1),-1); %round to nearest tenths
funcevals=funcevals+1;
b=alpha;
alpha=alpha*2-1;
bracket_step=bracket_step+1;

if bracket_step > 4
bracketmin=false;
bracketminfalse(mciter)=bracketminfalse(mciter)+1;
warning(’could not bracket minimum for lin search in less
than 4 steps’)
break

end
end

end

163

%Step 2- perform quadradic interpolation:
if bracketmin==true %lin search...

linsearchconverge=true;
linstep=1;
while linstep==1 || abs((Falpha-Fnu))/deljstep > abs(-1*

linsearchparam*directedgrad(iter)) %criterion for linear
%search (finite difference replaces gradient)- GMW p. 102
if linstep > 1

if alpha < c && Falpha <= Fc
b=c;
c=alpha;
Fb=Fc;
Fc=Falpha;

elseif alpha > c && Falpha > Fc
b=alpha;
Fb=Falpha;

elseif alpha < c && Falpha > Fc
a=alpha;
Fa=Falpha;

else
a=c;
c=alpha;
Fa=Fc;
Fc=Falpha;

end
end
if Fa==Fb && Fb==Fc %can’t optimize any further with quad interp

break
end
if c-10000*eps<a&&a<c+10000*eps %saying if a==c

%can’t optimize any further with quad interp
break

end
if -10000*eps<((b-c)*Fa+(c-a)*Fb+(a-b)*Fc)&&((b-c)*Fa+(c-a)*

Fb+(a-b)*Fc)<10000*eps %saying if den of alpha calc == 0
%can’t optimize any further with quad interp
break

end
alpha=.5*((b^2-c^2)*Fa+(c^2-a^2)*Fb+(a^2-b^2)*Fc)/((b-c)*
Fa+(c-a)*Fb+(a-b)*Fc);
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
Falpha(i)=getsignalpower(x(1,iter)+alpha*deltax(1,iter)+
linnoisexel+sattravelx,x(2,iter)+alpha*deltax(2,iter)+
linnoiseel+sattravely,meshsize,xel,el,gridpow2,
interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
Falpha(1)=mean(Falpha(1,:));
Falpha=roundn(Falpha(1),-1); %round to nearest tenths
funcevals=funcevals+1;
if norm([alpha*deltax(1,iter);alpha*deltax(2,iter)])>=deljstep

if alpha > 0
nu=norm([alpha*deltax(1,iter)-nux;alpha*deltax(2,iter)

-nuy])/norm(deltax(:,iter)); %ensure that nu value

164

%will be deljstep away from alpha in 1-d
else

nu=-1*norm([alpha*deltax(1,iter)+nux;alpha*
deltax(2,iter)+nuy])/norm(deltax(:,iter));

end
else

if alpha > 0
nu=-1*norm([alpha*deltax(1,iter)-nux;alpha*

deltax(2,iter)-nuy])/norm(deltax(:,iter)); %ensure
%that nu value will be deljstep away from alpha in 1-d

else
nu=norm([alpha*deltax(1,iter)+nux;alpha*deltax(2,iter)+

nuy])/norm(deltax(:,iter));
end

end
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
Fnu(i)=getsignalpower(x(1,iter)+nu*deltax(1,iter)+
linnoisexel+sattravelx,x(2,iter)+nu*deltax(2,iter)+
linnoiseel+sattravely,meshsize,xel,el,gridpow2,
interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
Fnu(1)=mean(Fnu(1,:));
Fnu=roundn(Fnu(1),-1); %round to nearest tenths
funcevals=funcevals+1;
linstep=linstep+1;
if linstep > 20

linsearchconverge=false;
break

end
end
linstepcount(iter)=linstep;

end
end
if linsearchconverge==true %if lin search produced a good alpha

%within max number of linsteps
deltax(:,iter)=deltax(:,iter)*alpha;

end %else, alpha remains at one (or whatever it was from the
%minimum check routine)
end
deltaxnorm(iter)=norm(deltax(:,iter));
x(:,iter+1)=x(:,iter)+deltax(:,iter);
xelpt=x(1,iter+1);
elpt=x(2,iter+1);

%jump off main lobe??
if xnormfromsat(iter) < .25 && deltaxnorm(iter) > 1.8
mainlobejump(mciter)=mainlobejump(mciter)+1;

end
%%%%%%%%%

iter=iter+1;
if funcevals > 500

warning(’max number of function evaluations reached’)
break

165

end
end

gradfalloffcount(mciter)=sum(gradfalloff);
%calculate approximate time
if satvel > eps*10000 %if satvel isn’t zero

time=satpos(end)/satvel;
else

time=0;
end
soln(1:2,mciter)=[x(1,end);x(2,end)];
soln(3,mciter)=iter;
simtime=toc;
soln(4,mciter)=simtime;
soln(5,mciter)=funcevals;
soln(6,mciter)=xnorm(end);
soln(7,mciter)=satpos(end);
soln(8,mciter)=xnormfromsat(end);
soln(9,mciter)=time;
soln(10,mciter)=sum(linstepcount);
soln(11,mciter)=mainlobejump(mciter);
soln(12,mciter)=gradfalloffcount(mciter);

end

C.3 BFGS.m

%Eric Marsh
%MIT LL, GRP 61
%February 2008

%BFGS Quasi Newton’s Method

%Description:
%This step-tracking simulation accomplishes spatial pull-in from the
%starting points defined in testvec.mat. The cost function is defined in
%30nov.mat.

clear all
%close all load an antenna pattern *.mat file from genantennapattern.m
load 30nov.mat
load testvec.mat

soln=zeros(7,1000);
mainlobejump=zeros(1,1000);
denzerocount=zeros(1,1000);
bracketminfalse=zeros(1,1000);
gradfalloffcount=zeros(1,1000);

for mciter=1:1000
tic
xelpt=testvec(1,mciter); %initial guess
elpt=testvec(2,mciter); %initial guess

deljstep=.16; %(deg) this is ~3* the 3sigma on the 1-d pointing error distributions (also good for lin interp of ant pattern and machine errors)

166

deltax=[0;0];
x=[xelpt;elpt];
xnorm=0;
deltaxnorm=0;
iter=1;
epsilon=0.63; %looser?
gradient=[10^2;10^2];
hessian=zeros(2,2);
interp_method=’linear’;
R=zeros(2,2);
funcevals=0;
xelvar=.0004; %deg^2
elvar=.0004; %deg^2
ntsamps=10; %number of time samples to ensure normal distribution in xel
%and el
Fminjump=zeros(1,ntsamps);
gradswitch=epsilon*10;
linsearchparam=0.5;
linstepcount=0;
mincheck=0;
mincheckthreshold=4;
gradientnext=[0;0];
hessianhat=zeros(2,2);
jumpcond=false;
B=eye(2);
Bunmod=eye(2);
Q=zeros(2,2);
deltag=zeros(2,1);
changeB=0;
updateB=false;
directedgrad=0;
mincheckvec=0;
gradfalloff=0;
satvel=0.0005; %deg/sec
satvelx=sqrt(satvel^2/2);
satvely=satvelx;
samplewaittime=0.25; %sec
sattravelx=0;
sattravely=0;
xnormfromsat=0;
satpos=0;

% set terminate = false
terminate=false;
% while terminate = false
while terminate==false
% set compute alpha*pk = true
computedeltax=true;
%perform function/gradient evaluations at xk: initializations
xnorm(iter)=norm(x(:,iter));
satpos(iter)=norm([sattravelx;sattravely]);
xnormfromsat(iter)=abs(xnorm(iter)-satpos(iter));
F=zeros(13,ntsamps);
g=zeros(2,5);
G=zeros(2,2);

167

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%perform function evals:%%%%%%%%%%%%%%%%%%%%%%%
%F9,F10,F11 not needed
if iter==1
%%%F1%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(1,i)=getsignalpower(xelpt+linnoisexel+sattravelx,elpt+linnoiseel+
sattravely,meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(1,1)=mean(F(1,:));
F(1,1)=roundn(F(1,1),-1); %round to nearest tenths
funcevals=funcevals+1;

%%%F2%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(2,i)=getsignalpower(xelpt+linnoisexel+deljstep+sattravelx,elpt+
linnoiseel+sattravely,meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(2,1)=mean(F(2,:));
F(2,1)=roundn(F(2,1),-1); %round to nearest tenths
funcevals=funcevals+1;

%%%F3%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(3,i)=getsignalpower(xelpt+linnoisexel+sattravelx,elpt+linnoiseel-
deljstep+sattravely,meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(3,1)=mean(F(3,:));
F(3,1)=roundn(F(3,1),-1); %round to nearest tenths
funcevals=funcevals+1;

%%%F4%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(4,i)=getsignalpower(xelpt+linnoisexel-deljstep+sattravelx,elpt+
linnoiseel+sattravely,meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(4,1)=mean(F(4,:));
F(4,1)=roundn(F(4,1),-1); %round to nearest tenths
funcevals=funcevals+1;

%%%F5%%%
for i=1:ntsamps

168

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(5,i)=getsignalpower(xelpt+linnoisexel+sattravelx,elpt+linnoiseel+
deljstep+sattravely,meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(5,1)=mean(F(5,:));
F(5,1)=roundn(F(5,1),-1); %round to nearest tenths
funcevals=funcevals+1;
else

F=Fnext(:,1);
end

%Form gradient vectors g3,g4 not needed
if iter==1

g(:,1)=[(F(2,1)-F(4,1))/(2*deljstep);(F(5,1)-F(3,1))/(2*deljstep)];
gradient(:,iter)=g(:,1);

else
g(:,1)=gradientnext(:,iter-1);
gradient(:,iter)=g(:,1);

end

%%%%%%%%%%%%%%%%%%%%%%%%check for local or global min:%%%%%%%%%%%%%%%%%%%%%
% if criteria for minimum = true (small gradient)
if norm(gradient(:,iter)) < epsilon

%in order to check for a local v. global min, need hessian matrix (more
%func evals):
%%%F6%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(6,i)=getsignalpower(xelpt+linnoisexel+deljstep+sattravelx,elpt+
linnoiseel+deljstep+sattravely,meshsize,xel,el,gridpow2,
interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(6,1)=mean(F(6,:));
F(6,1)=roundn(F(6,1),-1); %round to nearest tenths
funcevals=funcevals+1;

%%%F7%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(7,i)=getsignalpower(xelpt+linnoisexel+2*deljstep+sattravelx,elpt+
linnoiseel+sattravely,meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(7,1)=mean(F(7,:));
F(7,1)=roundn(F(7,1),-1); %round to nearest tenths
funcevals=funcevals+1;

%%%F13%%%

169

for i=1:ntsamps
linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(13,i)=getsignalpower(xelpt+linnoisexel+sattravelx,elpt+linnoiseel
+2*deljstep+sattravely,meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(13,1)=mean(F(13,:));
F(13,1)=roundn(F(13,1),-1); %round to nearest tenths
funcevals=funcevals+1;

if iter==1 || norm(gradient(:,iter-1)) < gradswitch
%%%F8%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(8,i)=getsignalpower(xelpt+linnoisexel+deljstep+sattravelx,elpt+
linnoiseel-deljstep+sattravely,meshsize,xel,el,gridpow2,
interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(8,1)=mean(F(8,:));
F(8,1)=roundn(F(8,1),-1); %round to nearest tenths
funcevals=funcevals+1;

%%%F12%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(12,i)=getsignalpower(xelpt+linnoisexel-deljstep+sattravelx,elpt+
linnoiseel+deljstep+sattravely,meshsize,xel,el,gridpow2,
interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(12,1)=mean(F(12,:));
F(12,1)=roundn(F(12,1),-1); %round to nearest tenths
funcevals=funcevals+1;
end
if iter==1 || norm(gradient(:,iter-1)) < gradswitch

g(:,2)=[(F(7,1)-F(1,1))/(2*deljstep);(F(6,1)-F(8,1))/(2*deljstep)];
g(:,5)=[(F(6,1)-F(12,1))/(2*deljstep);(F(13,1)-F(1,1))/(2*deljstep)];

else
g(:,2)=[(F(7,1)-F(2,1))/(deljstep);(F(6,1)-F(2,1))/(deljstep)];
g(:,5)=[(F(6,1)-F(5,1))/(deljstep);(F(13,1)-F(5,1))/(deljstep)];

end
%form hessian (G) matrix and check to see if you are on a local minimum
G(:,1)=(g(:,2)-g(:,1))/(deljstep);
G(:,2)=(g(:,5)-g(:,1))/(deljstep);
G=.5*(G+G’);
hessian(:,:,iter)=G;
%modified cholesky factorization of Hessian
L=eye(2);
D=zeros(2,2);
R=zeros(2,2);

170

delta=10; %effectively adds more or less damping to lin search
for j=1:2

if j==1
D(j,j)=G(j,j);
if D(j,j)<delta

R(j,j)=(delta-D(j,j));
D(j,j)=R(j,j)+D(j,j);

end
L(2,j)=G(2,j)/D(j,j);

elseif j==2
D(j,j)=G(j,j)-D(1,1)*(L(j,1))^2;
if D(j,j)<delta

R(j,j)=(delta-D(j,j));
D(j,j)=R(j,j)+D(j,j);

end
end

end
%%%%%%%%
hessianhat(:,:,iter)=L*D*L’;
%check for local min
if (norm(gradient(:,iter))<epsilon) && (R(1,1) > 0 || R(2,2) > 0) %if

%you’re at a weak min (grad small, hessian modified)
jumpcond=true;
V=zeros(2,2);
E=zeros(2,2);
deltaxminjump=zeros(2,1);
jumpxel=0;
jumpel=0;
[V,E]=eig(hessian(:,:,iter));
if V(:,1)’*hessian(:,:,iter)*V(:,1) > V(:,2)’*hessian(:,:,iter)*

V(:,2)
deltaxminjump=V(:,1);

else
deltaxminjump=V(:,2);

end
deltaxminjump=deltaxminjump*1.85; %1.85 comes from averaging
%distance between first 4 peaks on ant. pattern
jumpxel=x(1,iter)+deltaxminjump(1);
jumpel=x(2,iter)+deltaxminjump(2);
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
Fminjump(i)=getsignalpower(jumpxel+linnoisexel+sattravelx,
jumpel+linnoiseel+sattravely,meshsize,xel,el,gridpow2,
interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
Fminjump(1)=mean(Fminjump(1,:));
Fminjump=roundn(Fminjump(1),-1); %round to nearest tenths
funcevals=funcevals+1;
if Fminjump(1) > F(1,1) %must check to see you are going in right

%direction on eigenvector
deltax(:,iter)=deltaxminjump*-1; %head the opposite way
Fminjump(1)=0;

else
deltax(:,iter)=deltaxminjump; %you jumped the correct way

171

end
mincheck=0;

else
deltax(:,iter)=[0;0];
mincheck=mincheck+1;

end
computedeltax=false;
if mincheck > mincheckthreshold

%computedeltax=true; %complete one more jump (already evaluated the
%function so might as well)
terminate=true;

end
elseif mincheck > 0 && norm(gradient(:,iter)) > epsilon

computedeltax=true;
mincheck=0;
gradfalloff(iter)=1;

end
mincheckvec(iter)=mincheck;

if computedeltax==true %%%%%%%%%%%if compute alpha*pk = true%%%

%%%%%%%%%compute pk and initial alpha:%%%%%%%%%%%%%%%%%%%%%%
deltax(:,iter)=inv(B(:,:,iter))*-gradient(:,iter);
alpha=1;
%limit alpha*pk to a predetermined region of confidence:
if norm(deltax(:,iter))>1.0 %if deltax is outside a "region of trust" chosen so if you’re at a max, won’t go over another max (max initial step routine will take)

deltax(:,iter)=(deltax(:,iter)/norm(deltax(:,iter)))*.75;
end

%evaluate function at initial alpha=1 value:
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
Falpha(i)=getsignalpower(x(1,iter)+deltax(1,iter)+linnoisexel+
sattravelx,x(2,iter)+deltax(2,iter)+linnoiseel+sattravely,meshsize,xel,
el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
Falpha(1)=mean(Falpha(1,:));
Falpha=roundn(Falpha(1),-1); %round to nearest tenths
funcevals=funcevals+1;

%evaluate point along search direction to approximate gradient at alpha=1
dx1=deltax(1,iter)/norm(deltax(:,iter));
dx2=deltax(2,iter)/norm(deltax(:,iter));
nux=dx1*deljstep;
nuy=dx2*deljstep;
if norm([alpha*deltax(1,iter);alpha*deltax(2,iter)])>=deljstep

if alpha > 0
nu=norm([alpha*deltax(1,iter)-nux;alpha*deltax(2,iter)-nuy])/
norm(deltax(:,iter)); %ensure that nu value will be deljstep away
%from alpha in 1-d

else
nu=-1*norm([alpha*deltax(1,iter)+nux;alpha*deltax(2,iter)+nuy])/

172

norm(deltax(:,iter));
end

else
if alpha > 0

nu=-1*norm([alpha*deltax(1,iter)-nux;alpha*deltax(2,iter)-nuy])/
norm(deltax(:,iter)); %ensure that nu value will be deljstep away
%from alpha in 1-d

else
nu=norm([alpha*deltax(1,iter)+nux;alpha*deltax(2,iter)+nuy])/
norm(deltax(:,iter));

end
end
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
Fnu(i)=getsignalpower(x(1,iter)+nu*deltax(1,iter)+linnoisexel+
sattravelx,x(2,iter)+nu*deltax(2,iter)+linnoiseel+sattravely,meshsize,
xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
Fnu(1)=mean(Fnu(1,:));
Fnu=roundn(Fnu(1),-1); %round to nearest tenths
funcevals=funcevals+1;

%%%%%%%%%%%%%%%%%%%%perform linear search along pk to determine
%%%%%%%%%%%%%%%%%%%%satisfactory alpha %%%%%%%%%%%%%%%%%%%%%%
linsearchconverge=false;
directedgrad(iter)=deltax(:,iter)’*gradient(:,iter);
%if alpha=1 is not satisfactory, perform lin search:
if abs((Falpha-Fnu))/deljstep > abs(-1*linsearchparam*directedgrad(iter))

%Criterion for lin search-(finite difference replaces gradient)- GMW
%p. 102

%Step 1- make sure you have an interval bracketing a minimum:
bracketmin=true;
if F(1,1)<Falpha %look opposite direction to find Fa and a values for

%interval containing minimum
alpha=-1;
bracket_step=1;
Fb=Falpha;
b=1;
Fc=F(1,1);
c=0;
Fa=-10^6;
a=alpha;

while Fa(1) <= Fc
if bracket_step > 1

Fb=Fc;
b=c;
Fc=Fa(1);
c=a;

end
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
Fa(i)=getsignalpower(x(1,iter)+alpha*deltax(1,iter)+

173

linnoisexel+sattravelx,x(2,iter)+alpha*deltax(2,iter)+
linnoiseel+sattravely,meshsize,xel,el,gridpow2,
interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
Fa(1)=mean(Fa(1,:));
Fa=roundn(Fa(1),-1); %round to nearest tenths
funcevals=funcevals+1;
a=alpha;
alpha=alpha*2;
bracket_step=bracket_step+1;

if bracket_step > 4
bracketmin=false;
bracketminfalse(mciter)=bracketminfalse(mciter)+1;
warning(’could not bracket minimum for lin search in less
than 4 steps’)
break

end
end

else %continue searching along search direction until a min is
%bracketed- (find b)

alpha=2;
bracket_step=1;
Fc=Falpha;
c=1;
Fa=F(1,1);
a=0;
Fb=-10^6;
b=alpha;

while Fb(1) <= Fc
if bracket_step > 1

Fa=Fc;
a=c;
Fc=Fb(1);
c=b;

end

for i=1:ntsamps
linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
Fb(i)=getsignalpower(x(1,iter)+alpha*deltax(1,iter)+
linnoisexel+sattravelx,x(2,iter)+alpha*deltax(2,iter)+
linnoiseel+sattravely,meshsize,xel,el,gridpow2,
interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
Fb(1)=mean(Fb(1,:));
Fb=roundn(Fb(1),-1); %round to nearest tenths
funcevals=funcevals+1;
b=alpha;
alpha=alpha*2-1;
bracket_step=bracket_step+1;

if bracket_step > 4
bracketmin=false;
bracketminfalse(mciter)=bracketminfalse(mciter)+1;
warning(’could not bracket minimum for lin search in less

174

than 4 steps’)
break

end
end

end
%Step 2- perform quadradic interpolation:
if bracketmin==true %lin search...

linsearchconverge=true;
linstep=1;
while linstep==1 || abs((Falpha-Fnu))/deljstep > abs(-1*

linsearchparam*directedgrad(iter)) %criterion for linear
%search (finite difference replaces gradient)- GMW p. 102
if linstep > 1

if alpha < c && Falpha <= Fc
b=c;
c=alpha;
Fb=Fc;
Fc=Falpha;

elseif alpha > c && Falpha > Fc
b=alpha;
Fb=Falpha;

elseif alpha < c && Falpha > Fc
a=alpha;
Fa=Falpha;

else
a=c;
c=alpha;
Fa=Fc;
Fc=Falpha;

end
end
if Fa==Fb && Fb==Fc %can’t optimize any further with quad interp

break
end
if c-10000*eps<a&&a<c+10000*eps %saying if a==c

%can’t optimize any further with quad interp
break

end
if -10000*eps<((b-c)*Fa+(c-a)*Fb+(a-b)*Fc)&&((b-c)*Fa+(c-a)*

Fb+(a-b)*Fc)<10000*eps %saying if den of alpha calc == 0
%can’t optimize any further with quad interp
break

end
alpha=.5*((b^2-c^2)*Fa+(c^2-a^2)*Fb+(a^2-b^2)*Fc)/((b-c)*
Fa+(c-a)*Fb+(a-b)*Fc);
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
Falpha(i)=getsignalpower(x(1,iter)+alpha*deltax(1,iter)+
linnoisexel+sattravelx,x(2,iter)+alpha*deltax(2,iter)+
linnoiseel+sattravely,meshsize,xel,el,gridpow2,
interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
Falpha(1)=mean(Falpha(1,:));
Falpha=roundn(Falpha(1),-1); %round to nearest tenths
funcevals=funcevals+1;

175

if norm([alpha*deltax(1,iter);alpha*deltax(2,iter)])>=deljstep
if alpha > 0

nu=norm([alpha*deltax(1,iter)-nux;alpha*deltax(2,iter)
-nuy])/norm(deltax(:,iter)); %ensure that nu value

%will be deljstep away from alpha in 1-d
else

nu=-1*norm([alpha*deltax(1,iter)+nux;alpha*
deltax(2,iter)+nuy])/norm(deltax(:,iter));

end
else

if alpha > 0
nu=-1*norm([alpha*deltax(1,iter)-nux;alpha*

deltax(2,iter)-nuy])/norm(deltax(:,iter)); %ensure
%that nu value will be deljstep away from alpha in 1-d

else
nu=norm([alpha*deltax(1,iter)+nux;alpha*deltax(2,iter)+

nuy])/norm(deltax(:,iter));
end

end
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
Fnu(i)=getsignalpower(x(1,iter)+nu*deltax(1,iter)+
linnoisexel+sattravelx,x(2,iter)+nu*deltax(2,iter)+
linnoiseel+sattravely,meshsize,xel,el,gridpow2,
interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
Fnu(1)=mean(Fnu(1,:));
Fnu=roundn(Fnu(1),-1); %round to nearest tenths
funcevals=funcevals+1;
linstep=linstep+1;
if linstep > 20

linsearchconverge=false;
break

end
end
linstepcount(iter)=linstep;

end
end
if linsearchconverge==true %if lin search produced a good alpha

%within max number of linsteps
deltax(:,iter)=deltax(:,iter)*alpha;

end %else, alpha remains at one (or whatever it was from the
%minimum check routine)
end
deltaxnorm(iter)=norm(deltax(:,iter));
x(:,iter+1)=x(:,iter)+deltax(:,iter);
xelpt=x(1,iter+1);
elpt=x(2,iter+1);

%%%%%%%%%%%%%%%%%%calculate function values and gradient values for next
%%%%%%%%%%%%%%%%%%point%%%%%%%%%%%%%%%
Fnext=zeros(13,ntsamps);
if Fminjump(1)==0

computeF1=true;

176

else
computeF1=false;

end
%%%F1%%%
if computeF1==true
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
Fnext(1,i)=getsignalpower(xelpt+linnoisexel+sattravelx,elpt+linnoiseel+
sattravely,meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
Fnext(1,1)=mean(Fnext(1,:));
Fnext(1,1)=roundn(Fnext(1,1),-1); %round to nearest tenths
funcevals=funcevals+1;
else

Fnext(1,1)=Fminjump(1);
end

%%%F2%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
Fnext(2,i)=getsignalpower(xelpt+linnoisexel+deljstep+sattravelx,elpt+
linnoiseel+sattravely,meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
Fnext(2,1)=mean(Fnext(2,:));
Fnext(2,1)=roundn(Fnext(2,1),-1); %round to nearest tenths
funcevals=funcevals+1;

%%%F5%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
Fnext(5,i)=getsignalpower(xelpt+linnoisexel+sattravelx,elpt+linnoiseel+
deljstep+sattravely,meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
Fnext(5,1)=mean(Fnext(5,:));
Fnext(5,1)=roundn(Fnext(5,1),-1); %round to nearest tenths
funcevals=funcevals+1;

if norm(gradient(:,iter)) < gradswitch
%%%F3%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
Fnext(3,i)=getsignalpower(xelpt+linnoisexel+sattravelx,elpt+linnoiseel-
deljstep+sattravely,meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
Fnext(3,1)=mean(Fnext(3,:));

177

Fnext(3,1)=roundn(Fnext(3,1),-1); %round to nearest tenths
funcevals=funcevals+1;

%%%F4%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
Fnext(4,i)=getsignalpower(xelpt+linnoisexel-deljstep+sattravelx,elpt+
linnoiseel+sattravely,meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
Fnext(4,1)=mean(Fnext(4,:));
Fnext(4,1)=roundn(Fnext(4,1),-1); %round to nearest tenths
funcevals=funcevals+1;
end
Fminjump=zeros(1,ntsamps);

%Form gradient vectors gnext3,gnext4 not needed
if (norm(gradient(:,iter)) < gradswitch)

gnext(:,1)=[(Fnext(2,1)-Fnext(4,1))/(2*deljstep);(Fnext(5,1)-
Fnext(3,1))/(2*deljstep)];
gradientnext(:,iter)=gnext(:,1);

else
gnext(:,1)=[(Fnext(2,1)-Fnext(1,1))/(deljstep);(Fnext(5,1)-Fnext(1,1))

/(deljstep)];
gradientnext(:,iter)=gnext(:,1);
fwddifcount(iter+1)=1;

end
deltag(:,iter)=gradientnext(:,iter)-gradient(:,iter);
%%

%%%%%%%%%%%%%%%%%update B matrix%%%%%%%%%%%%%%%%%%%%%%%%%:
%conditions for update
if norm(deltag(:,iter)) > 0+10000*eps

deltagzero=false;
else

deltagzero=true;
end
if abs(deltag(:,iter)’*deltax(:,iter)) > 0+10000*eps && abs(deltax(:,iter)’

*gradient(:,iter)) > 0+10000*eps
denzero=false;

else
denzero=true;
if norm(deltax(:,iter)) > 0+10000*eps

denzerocount(mciter)=denzerocount(mciter)+1;
end

end

if norm(deltax(:,iter)) < 0+10000*eps %if you didn’t go anywhere, B is
%what is was before
B(:,:,iter+1)=B(:,:,iter);

elseif jumpcond==true || deltagzero==true || denzero==true %reset B to
%identity if you just made a jump or deltag is zero or the denominator
%of the update matrix Q is going to be zero
B(:,:,iter+1)=eye(2);
jumpcond=false;

178

deltagzero=false;
else %update B

Q(:,:,iter)=deltag(:,iter)*deltag(:,iter)’/(deltag(:,iter)’*
deltax(:,iter))+alpha^2*gradient(:,iter)*gradient(:,iter)’/(alpha*
deltax(:,iter)’*gradient(:,iter));
B(:,:,iter+1)=B(:,:,iter)+Q(:,:,iter);
updateB=true;

end

if updateB==true
%modified cholesky factorization of B

Bunmod(:,:,iter+1)=B(:,:,iter+1);
L=eye(2);
D=zeros(2,2);
R=zeros(2,2);
delta2=5;
for j=1:2

if j==1
D(j,j)=B(j,j,iter+1);
if D(j,j)<delta2

R(j,j)=(delta2-D(j,j));
D(j,j)=R(j,j)+D(j,j);

end
L(2,j)=B(2,j,iter+1)/D(j,j);

elseif j==2
D(j,j)=B(j,j,iter+1)-D(1,1)*(L(j,1))^2;
if D(j,j)<delta2

R(j,j)=(delta2-D(j,j));
D(j,j)=R(j,j)+D(j,j);

end
end

end
%%%%%%%%
B(:,:,iter+1)=L*D*L’;
if R(1,1) > 0 || R(2,2) > 0
changeB(iter)=1;

end
end
updateB=false;
%%

%jump off main lobe??
if xnormfromsat(iter) < .25 && deltaxnorm(iter) > 1.8
mainlobejump(mciter)=mainlobejump(mciter)+1;

end
%%%%%%%%%

iter=iter+1;
if funcevals > 500

warning(’max number of function evaluations reached’)
break

end
end

gradfalloffcount(mciter)=sum(gradfalloff);
%calculate approximate time
if satvel > eps*10000 %if satvel isn’t zero

179

time=satpos(end)/satvel;
else

time=0;
end
soln(1:2,mciter)=[x(1,end);x(2,end)];
soln(3,mciter)=iter;
simtime=toc;
soln(4,mciter)=simtime;
soln(5,mciter)=funcevals;
soln(6,mciter)=xnorm(end);
soln(7,mciter)=satpos(end);
soln(8,mciter)=xnormfromsat(end);
soln(9,mciter)=time;
soln(10,mciter)=sum(linstepcount);
soln(11,mciter)=mainlobejump(mciter);
soln(12,mciter)=gradfalloffcount(mciter);
soln(13,mciter)=denzerocount(mciter);
end

C.4 DFP.m

%Eric Marsh MIT LL, GRP 61 February 2008

%DFP Quasi Newton’s Method

%Description: This step-tracking simulation accomplishes spatial pull-in
%from the starting points defined in testvec.mat. The cost function is
%defined in 30nov.mat.
clear all
%close all load an antenna pattern *.mat file from genantennapattern.m
load 30nov.mat
load testvec.mat

soln=zeros(13,1000);
mainlobejump=zeros(1,1000);
denzerocount=zeros(1,1000);
bracketminfalse=zeros(1,1000);
gradfalloffcount=zeros(1,1000);

for mciter=1:1000
tic
xelpt=testvec(1,mciter); %initial guess
elpt=testvec(2,mciter); %initial guess

deljstep=.16; %(deg) this is ~3* the 3sigma on the 1-d pointing error
%distributions (also good for lin interp of ant pattern and machine errors)
deltax=[0;0];
x=[xelpt;elpt];
xnorm=0;
deltaxnorm=0;
iter=1;
epsilon=0.63; %looser?
gradient=[10^2;10^2];
hessian=zeros(2,2);
interp_method=’linear’;

180

R=zeros(2,2);
funcevals=0;
xelvar=.0004; %deg^2
elvar=.0004; %deg^2
ntsamps=10; %number of time samples to ensure normal distribution in xel
%and el
Fminjump=zeros(1,ntsamps);
gradswitch=epsilon*10;
linsearchparam=0.5;
linstepcount=0;
mincheck=0;
mincheckthreshold=4;
gradientnext=[0;0];
hessianhat=zeros(2,2);
jumpcond=false;
B=eye(2);
Bunmod=eye(2);
Q=zeros(2,2);
deltag=zeros(2,1);
changeB=0;
updateB=false;
directedgrad=0;
mincheckvec=0;
gradfalloff=0;
satvel=0.0005; %deg/sec
satvelx=sqrt(satvel^2/2);
satvely=satvelx;
samplewaittime=0.25; %sec
sattravelx=0;
sattravely=0;
xnormfromsat=0;
satpos=0;

% set terminate = false
terminate=false;
% while terminate = false
while terminate==false
% set compute alpha*pk = true
computedeltax=true;
%perform function/gradient evaluations at xk: initializations
xnorm(iter)=norm(x(:,iter));
satpos(iter)=norm([sattravelx;sattravely]);
xnormfromsat(iter)=abs(xnorm(iter)-satpos(iter));
F=zeros(13,ntsamps);
g=zeros(2,5);
G=zeros(2,2);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%perform function evals:%%%%%%%%%%%%%%%%%%%%%%%
%F9,F10,F11 not needed
if iter==1
%%%F1%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(1,i)=getsignalpower(xelpt+linnoisexel+sattravelx,elpt+linnoiseel+
sattravely,meshsize,xel,el,gridpow2,interp_method);

181

sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(1,1)=mean(F(1,:));
F(1,1)=roundn(F(1,1),-1); %round to nearest tenths
funcevals=funcevals+1;

%%%F2%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(2,i)=getsignalpower(xelpt+linnoisexel+deljstep+sattravelx,elpt+
linnoiseel+sattravely,meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(2,1)=mean(F(2,:));
F(2,1)=roundn(F(2,1),-1); %round to nearest tenths
funcevals=funcevals+1;

%%%F3%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(3,i)=getsignalpower(xelpt+linnoisexel+sattravelx,elpt+linnoiseel-
deljstep+sattravely,meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(3,1)=mean(F(3,:));
F(3,1)=roundn(F(3,1),-1); %round to nearest tenths
funcevals=funcevals+1;

%%%F4%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(4,i)=getsignalpower(xelpt+linnoisexel-deljstep+sattravelx,elpt+
linnoiseel+sattravely,meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(4,1)=mean(F(4,:));
F(4,1)=roundn(F(4,1),-1); %round to nearest tenths
funcevals=funcevals+1;

%%%F5%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(5,i)=getsignalpower(xelpt+linnoisexel+sattravelx,elpt+linnoiseel+
deljstep+sattravely,meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(5,1)=mean(F(5,:));
F(5,1)=roundn(F(5,1),-1); %round to nearest tenths
funcevals=funcevals+1;

182

else
F=Fnext(:,1);

end

%Form gradient vectors g3,g4 not needed
if iter==1

g(:,1)=[(F(2,1)-F(4,1))/(2*deljstep);(F(5,1)-F(3,1))/(2*deljstep)];
gradient(:,iter)=g(:,1);

else
g(:,1)=gradientnext(:,iter-1);
gradient(:,iter)=g(:,1);

end

%%%%%%%%%%%%%%%%%%%%%%%%check for local or global min:%%%%%%%%%%%%%%%%%%%%%
% if criteria for minimum = true (small gradient)
if norm(gradient(:,iter)) < epsilon

%in order to check for a local v. global min, need hessian matrix (more
%func evals):
%%%F6%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(6,i)=getsignalpower(xelpt+linnoisexel+deljstep+sattravelx,elpt+
linnoiseel+deljstep+sattravely,meshsize,xel,el,gridpow2,
interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(6,1)=mean(F(6,:));
F(6,1)=roundn(F(6,1),-1); %round to nearest tenths
funcevals=funcevals+1;

%%%F7%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(7,i)=getsignalpower(xelpt+linnoisexel+2*deljstep+sattravelx,elpt+
linnoiseel+sattravely,meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(7,1)=mean(F(7,:));
F(7,1)=roundn(F(7,1),-1); %round to nearest tenths
funcevals=funcevals+1;

%%%F13%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(13,i)=getsignalpower(xelpt+linnoisexel+sattravelx,elpt+linnoiseel
+2*deljstep+sattravely,meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(13,1)=mean(F(13,:));
F(13,1)=roundn(F(13,1),-1); %round to nearest tenths

183

funcevals=funcevals+1;

if iter==1 || norm(gradient(:,iter-1)) < gradswitch
%%%F8%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(8,i)=getsignalpower(xelpt+linnoisexel+deljstep+sattravelx,elpt+
linnoiseel-deljstep+sattravely,meshsize,xel,el,gridpow2,
interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(8,1)=mean(F(8,:));
F(8,1)=roundn(F(8,1),-1); %round to nearest tenths
funcevals=funcevals+1;

%%%F12%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(12,i)=getsignalpower(xelpt+linnoisexel-deljstep+sattravelx,elpt+
linnoiseel+deljstep+sattravely,meshsize,xel,el,gridpow2,
interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(12,1)=mean(F(12,:));
F(12,1)=roundn(F(12,1),-1); %round to nearest tenths
funcevals=funcevals+1;
end
if iter==1 || norm(gradient(:,iter-1)) < gradswitch

g(:,2)=[(F(7,1)-F(1,1))/(2*deljstep);(F(6,1)-F(8,1))/(2*deljstep)];
g(:,5)=[(F(6,1)-F(12,1))/(2*deljstep);(F(13,1)-F(1,1))/(2*deljstep)];

else
g(:,2)=[(F(7,1)-F(2,1))/(deljstep);(F(6,1)-F(2,1))/(deljstep)];
g(:,5)=[(F(6,1)-F(5,1))/(deljstep);(F(13,1)-F(5,1))/(deljstep)];

end
%form hessian (G) matrix and check to see if you are on a local minimum
G(:,1)=(g(:,2)-g(:,1))/(deljstep);
G(:,2)=(g(:,5)-g(:,1))/(deljstep);
G=.5*(G+G’);
hessian(:,:,iter)=G;
%modified cholesky factorization of Hessian
L=eye(2);
D=zeros(2,2);
R=zeros(2,2);
delta=10; %effectively adds more or less damping to lin search
for j=1:2

if j==1
D(j,j)=G(j,j);
if D(j,j)<delta

R(j,j)=(delta-D(j,j));
D(j,j)=R(j,j)+D(j,j);

end
L(2,j)=G(2,j)/D(j,j);

elseif j==2

184

D(j,j)=G(j,j)-D(1,1)*(L(j,1))^2;
if D(j,j)<delta

R(j,j)=(delta-D(j,j));
D(j,j)=R(j,j)+D(j,j);

end
end

end
%%%%%%%%
hessianhat(:,:,iter)=L*D*L’;
%check for local min
if (norm(gradient(:,iter))<epsilon) && (R(1,1) > 0 || R(2,2) > 0) %if

%you’re at a weak min (grad small, hessian modified)
jumpcond=true;
V=zeros(2,2);
E=zeros(2,2);
deltaxminjump=zeros(2,1);
jumpxel=0;
jumpel=0;
[V,E]=eig(hessian(:,:,iter));
if V(:,1)’*hessian(:,:,iter)*V(:,1) > V(:,2)’*hessian(:,:,iter)

*V(:,2)
deltaxminjump=V(:,1);

else
deltaxminjump=V(:,2);

end
deltaxminjump=deltaxminjump*1.85; %1.85 comes from averaging
%distance between first 4 peaks on ant. pattern
jumpxel=x(1,iter)+deltaxminjump(1);
jumpel=x(2,iter)+deltaxminjump(2);
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
Fminjump(i)=getsignalpower(jumpxel+linnoisexel+sattravelx,
jumpel+linnoiseel+sattravely,meshsize,xel,el,gridpow2,
interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
Fminjump(1)=mean(Fminjump(1,:));
Fminjump=roundn(Fminjump(1),-1); %round to nearest tenths
funcevals=funcevals+1;
if Fminjump(1) > F(1,1) %must check to see you are going in right

%direction on eigenvector
deltax(:,iter)=deltaxminjump*-1; %head the opposite way
Fminjump(1)=0;

else
deltax(:,iter)=deltaxminjump; %you jumped the correct way

end
mincheck=0;

else
deltax(:,iter)=[0;0];
mincheck=mincheck+1;

end
computedeltax=false;
if mincheck > mincheckthreshold

%computedeltax=true; %complete one more jump (already evaluated the
%function so might as well)

185

terminate=true;
end

elseif mincheck > 0 && norm(gradient(:,iter)) > epsilon
computedeltax=true;
mincheck=0;
gradfalloff(iter)=1;

end
mincheckvec(iter)=mincheck;

if computedeltax==true %%%%%%%%%%%if compute alpha*pk = true%%%%%%%%%%%%%%

%%%%%%%%%compute pk and initial alpha:%%%%%%%%%%%%%%%%%%%%%%
deltax(:,iter)=B(:,:,iter)\-gradient(:,iter);
alpha=1;
%limit alpha*pk to a predetermined region of confidence:
if norm(deltax(:,iter))>1.0 %if deltax is outside a "region of trust"

%chosen so if you’re at a max, won’t go over another max (max initial
%step routine will take)
deltax(:,iter)=(deltax(:,iter)/norm(deltax(:,iter)))*.75;

end

%evaluate function at initial alpha=1 value:
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
Falpha(i)=getsignalpower(x(1,iter)+deltax(1,iter)+linnoisexel+
sattravelx,x(2,iter)+deltax(2,iter)+linnoiseel+sattravely,meshsize,xel,
el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
Falpha(1)=mean(Falpha(1,:));
Falpha=roundn(Falpha(1),-1); %round to nearest tenths
funcevals=funcevals+1;

%evaluate point along search direction to approximate gradient at alpha=1
dx1=deltax(1,iter)/norm(deltax(:,iter));
dx2=deltax(2,iter)/norm(deltax(:,iter));
nux=dx1*deljstep;
nuy=dx2*deljstep;
if norm([alpha*deltax(1,iter);alpha*deltax(2,iter)])>=deljstep

if alpha > 0
nu=norm([alpha*deltax(1,iter)-nux;alpha*deltax(2,iter)-nuy])/
norm(deltax(:,iter)); %ensure that nu value will be deljstep away
%from alpha in 1-d

else
nu=-1*norm([alpha*deltax(1,iter)+nux;alpha*deltax(2,iter)+nuy])/
norm(deltax(:,iter));

end
else

if alpha > 0
nu=-1*norm([alpha*deltax(1,iter)-nux;alpha*deltax(2,iter)-nuy])/
norm(deltax(:,iter)); %ensure that nu value will be deljstep away
%from alpha in 1-d

186

else
nu=norm([alpha*deltax(1,iter)+nux;alpha*deltax(2,iter)+nuy])/
norm(deltax(:,iter));

end
end
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
Fnu(i)=getsignalpower(x(1,iter)+nu*deltax(1,iter)+linnoisexel+
sattravelx,x(2,iter)+nu*deltax(2,iter)+linnoiseel+sattravely,meshsize,
xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
Fnu(1)=mean(Fnu(1,:));
Fnu=roundn(Fnu(1),-1); %round to nearest tenths
funcevals=funcevals+1;

%%%%%%%%%%%%%%%%%%%%perform linear search along pk to determine
%%%%%%%%%%%%%%%%%%%%satisfactory alpha %%%%%%%%%%%%%%%%%%%%%%
linsearchconverge=false;
directedgrad(iter)=deltax(:,iter)’*gradient(:,iter);
%if alpha=1 is not satisfactory, perform lin search:
if abs((Falpha-Fnu))/deljstep > abs(-1*linsearchparam*directedgrad(iter))

%Criterion for lin search-(finite difference replaces gradient)- GMW
%p. 102

%Step 1- make sure you have an interval bracketing a minimum:
bracketmin=true;
if F(1,1)<Falpha %look opposite direction to find Fa and a values for

%interval containing minimum
alpha=-1;
bracket_step=1;
Fb=Falpha;
b=1;
Fc=F(1,1);
c=0;
Fa=-10^6;
a=alpha;

while Fa(1) <= Fc
if bracket_step > 1

Fb=Fc;
b=c;
Fc=Fa(1);
c=a;

end
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
Fa(i)=getsignalpower(x(1,iter)+alpha*deltax(1,iter)+
linnoisexel+sattravelx,x(2,iter)+alpha*deltax(2,iter)+
linnoiseel+sattravely,meshsize,xel,el,gridpow2,
interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
Fa(1)=mean(Fa(1,:));

187

Fa=roundn(Fa(1),-1); %round to nearest tenths
funcevals=funcevals+1;
a=alpha;
alpha=alpha*2;
bracket_step=bracket_step+1;

if bracket_step > 4
bracketmin=false;
bracketminfalse(mciter)=bracketminfalse(mciter)+1;
warning(’could not bracket minimum for lin search in less
than 4 steps’)
break

end
end

else %continue searching along search direction until a min is
%bracketed- (find b)

alpha=2;
bracket_step=1;
Fc=Falpha;
c=1;
Fa=F(1,1);
a=0;
Fb=-10^6;
b=alpha;

while Fb(1) <= Fc
if bracket_step > 1

Fa=Fc;
a=c;
Fc=Fb(1);
c=b;

end

for i=1:ntsamps
linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
Fb(i)=getsignalpower(x(1,iter)+alpha*deltax(1,iter)+
linnoisexel+sattravelx,x(2,iter)+alpha*deltax(2,iter)+
linnoiseel+sattravely,meshsize,xel,el,gridpow2,
interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
Fb(1)=mean(Fb(1,:));
Fb=roundn(Fb(1),-1); %round to nearest tenths
funcevals=funcevals+1;
b=alpha;
alpha=alpha*2-1;
bracket_step=bracket_step+1;

if bracket_step > 4
bracketmin=false;
bracketminfalse(mciter)=bracketminfalse(mciter)+1;
warning(’could not bracket minimum for lin search in less
than 4 steps’)
break

end
end

end
%Step 2- perform quadradic interpolation:
if bracketmin==true %lin search...

188

linsearchconverge=true;
linstep=1;
while linstep==1 || abs((Falpha-Fnu))/deljstep > abs(-1*

linsearchparam*directedgrad(iter)) %criterion for linear
%search (finite difference replaces gradient)- GMW p. 102
if linstep > 1

if alpha < c && Falpha <= Fc
b=c;
c=alpha;
Fb=Fc;
Fc=Falpha;

elseif alpha > c && Falpha > Fc
b=alpha;
Fb=Falpha;

elseif alpha < c && Falpha > Fc
a=alpha;
Fa=Falpha;

else
a=c;
c=alpha;
Fa=Fc;
Fc=Falpha;

end
end
if Fa==Fb && Fb==Fc %can’t optimize any further with quad interp

break
end
if c-10000*eps<a&&a<c+10000*eps %saying if a==c

%can’t optimize any further with quad interp
break

end
if -10000*eps<((b-c)*Fa+(c-a)*Fb+(a-b)*Fc)&&((b-c)*Fa+(c-a)*

Fb+(a-b)*Fc)<10000*eps %saying if den of alpha calc == 0
%can’t optimize any further with quad interp
break

end
alpha=.5*((b^2-c^2)*Fa+(c^2-a^2)*Fb+(a^2-b^2)*Fc)/((b-c)*
Fa+(c-a)*Fb+(a-b)*Fc);
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
Falpha(i)=getsignalpower(x(1,iter)+alpha*deltax(1,iter)+
linnoisexel+sattravelx,x(2,iter)+alpha*deltax(2,iter)+
linnoiseel+sattravely,meshsize,xel,el,gridpow2,
interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
Falpha(1)=mean(Falpha(1,:));
Falpha=roundn(Falpha(1),-1); %round to nearest tenths
funcevals=funcevals+1;
if norm([alpha*deltax(1,iter);alpha*deltax(2,iter)])>=deljstep

if alpha > 0
nu=norm([alpha*deltax(1,iter)-nux;alpha*deltax(2,iter)

-nuy])/norm(deltax(:,iter)); %ensure that nu value
%will be deljstep away from alpha in 1-d

else
nu=-1*norm([alpha*deltax(1,iter)+nux;alpha*

189

deltax(2,iter)+nuy])/norm(deltax(:,iter));
end

else
if alpha > 0

nu=-1*norm([alpha*deltax(1,iter)-nux;alpha*
deltax(2,iter)-nuy])/norm(deltax(:,iter)); %ensure

%that nu value will be deljstep away from alpha in 1-d
else

nu=norm([alpha*deltax(1,iter)+nux;alpha*deltax(2,iter)+
nuy])/norm(deltax(:,iter));

end
end
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
Fnu(i)=getsignalpower(x(1,iter)+nu*deltax(1,iter)+
linnoisexel+sattravelx,x(2,iter)+nu*deltax(2,iter)+
linnoiseel+sattravely,meshsize,xel,el,gridpow2,
interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
Fnu(1)=mean(Fnu(1,:));
Fnu=roundn(Fnu(1),-1); %round to nearest tenths
funcevals=funcevals+1;
linstep=linstep+1;
if linstep > 20

linsearchconverge=false;
break

end
end
linstepcount(iter)=linstep;

end
end
if linsearchconverge==true %if lin search produced a good alpha

%within max number of linsteps
deltax(:,iter)=deltax(:,iter)*alpha;

end %else, alpha remains at one (or whatever it was from the
%minimum check routine)
end
deltaxnorm(iter)=norm(deltax(:,iter));
x(:,iter+1)=x(:,iter)+deltax(:,iter);
xelpt=x(1,iter+1);
elpt=x(2,iter+1);

%%%%%%%%%%%%%%%%%%calculate function values and gradient values for next
%%%%%%%%%%%%%%%%%%point%%%%%%%%%%%%%%%
Fnext=zeros(13,ntsamps);
if Fminjump(1)==0

computeF1=true;
else

computeF1=false;
end
%%%F1%%%
if computeF1==true
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);

190

linnoiseel=randn(1,1)*sqrt(elvar);
Fnext(1,i)=getsignalpower(xelpt+linnoisexel+sattravelx,elpt+linnoiseel+
sattravely,meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
Fnext(1,1)=mean(Fnext(1,:));
Fnext(1,1)=roundn(Fnext(1,1),-1); %round to nearest tenths
funcevals=funcevals+1;
else

Fnext(1,1)=Fminjump(1);
end

%%%F2%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
Fnext(2,i)=getsignalpower(xelpt+linnoisexel+deljstep+sattravelx,elpt+
linnoiseel+sattravely,meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
Fnext(2,1)=mean(Fnext(2,:));
Fnext(2,1)=roundn(Fnext(2,1),-1); %round to nearest tenths
funcevals=funcevals+1;

%%%F5%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
Fnext(5,i)=getsignalpower(xelpt+linnoisexel+sattravelx,elpt+linnoiseel+
deljstep+sattravely,meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
Fnext(5,1)=mean(Fnext(5,:));
Fnext(5,1)=roundn(Fnext(5,1),-1); %round to nearest tenths
funcevals=funcevals+1;

if norm(gradient(:,iter)) < gradswitch
%%%F3%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
Fnext(3,i)=getsignalpower(xelpt+linnoisexel+sattravelx,elpt+linnoiseel-
deljstep+sattravely,meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
Fnext(3,1)=mean(Fnext(3,:));
Fnext(3,1)=roundn(Fnext(3,1),-1); %round to nearest tenths
funcevals=funcevals+1;

%%%F4%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);

191

Fnext(4,i)=getsignalpower(xelpt+linnoisexel-deljstep+sattravelx,elpt+
linnoiseel+sattravely,meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
Fnext(4,1)=mean(Fnext(4,:));
Fnext(4,1)=roundn(Fnext(4,1),-1); %round to nearest tenths
funcevals=funcevals+1;
end
Fminjump=zeros(1,ntsamps);

%Form gradient vectors gnext3,gnext4 not needed
if (norm(gradient(:,iter)) < gradswitch)

gnext(:,1)=[(Fnext(2,1)-Fnext(4,1))/(2*deljstep);(Fnext(5,1)-Fnext(3,1))
/(2*deljstep)];

gradientnext(:,iter)=gnext(:,1);
else

gnext(:,1)=[(Fnext(2,1)-Fnext(1,1))/(deljstep);(Fnext(5,1)-Fnext(1,1))
/(deljstep)];

gradientnext(:,iter)=gnext(:,1);
fwddifcount(iter+1)=1;

end
deltag(:,iter)=gradientnext(:,iter)-gradient(:,iter);
%%

%%%%%%%%%%%%%%%%%update B matrix%%%%%%%%%%%%%%%%%%%%%%%%%:
%conditions for update
if norm(deltag(:,iter)) > 0+10000*eps

deltagzero=false;
else

deltagzero=true;
end
if abs(deltag(:,iter)’*deltax(:,iter)) > 0+10000*eps

denzero=false;
else

denzero=true;
if norm(deltax(:,iter)) > 0+10000*eps

denzerocount(mciter)=denzerocount(mciter)+1;
end

end

if norm(deltax(:,iter)) < 0+10000*eps %if you didn’t go anywhere, B is what
%is was before
B(:,:,iter+1)=B(:,:,iter);

elseif jumpcond==true || deltagzero==true || denzero==true %reset B to
%identity if you just made a jump or deltag is zero or the denominator
%of the update matrix Q is going to be zero
B(:,:,iter+1)=eye(2);
jumpcond=false;
deltagzero=false;

else %update B
Q(:,:,iter)=deltag(:,iter)*deltag(:,iter)’/(deltag(:,iter)’
*deltax(:,iter))+alpha*gradient(:,iter)*deltag(:,iter)’/
(deltag(:,iter)’*deltax(:,iter))+alpha*deltag(:,iter)*gradient(:,iter)’/
(deltag(:,iter)’*deltax(:,iter))-
alpha*deltag(:,iter)*gradient(:,iter)’*deltax(:,iter)*deltag(:,iter)’/
(deltag(:,iter)’*deltax(:,iter));

192

B(:,:,iter+1)=B(:,:,iter)+Q(:,:,iter);
updateB=true;

end

if updateB==true
%modified cholesky factorization of B

Bunmod(:,:,iter+1)=B(:,:,iter+1);
L=eye(2);
D=zeros(2,2);
R=zeros(2,2);
delta2=5;
for j=1:2

if j==1
D(j,j)=B(j,j,iter+1);
if D(j,j)<delta2

R(j,j)=(delta2-D(j,j));
D(j,j)=R(j,j)+D(j,j);

end
L(2,j)=B(2,j,iter+1)/D(j,j);

elseif j==2
D(j,j)=B(j,j,iter+1)-D(1,1)*(L(j,1))^2;
if D(j,j)<delta2

R(j,j)=(delta2-D(j,j));
D(j,j)=R(j,j)+D(j,j);

end
end

end
%%%%%%%%
B(:,:,iter+1)=L*D*L’;
if R(1,1) > 0 || R(2,2) > 0
changeB(iter)=1;

end
end
updateB=false;
%%

%jump off main lobe??
if xnormfromsat(iter) < .25 && deltaxnorm(iter) > 1.8
mainlobejump(mciter)=mainlobejump(mciter)+1;

end
%%%%%%%%%

iter=iter+1;
if funcevals > 500

warning(’max number of function evaluations reached’)
break

end
end

gradfalloffcount(mciter)=sum(gradfalloff);
%calculate approximate time
if satvel > eps*10000 %if satvel isn’t zero

time=satpos(end)/satvel;
else

time=0;
end
soln(1:2,mciter)=[x(1,end);x(2,end)];
soln(3,mciter)=iter;

193

simtime=toc;
soln(4,mciter)=simtime;
soln(5,mciter)=funcevals;
soln(6,mciter)=xnorm(end);
soln(7,mciter)=satpos(end);
soln(8,mciter)=xnormfromsat(end);
soln(9,mciter)=time;
soln(10,mciter)=sum(linstepcount);
soln(11,mciter)=mainlobejump(mciter);
soln(12,mciter)=gradfalloffcount(mciter);
soln(13,mciter)=denzerocount(mciter);
end

C.5 steepestdescent.m

%Eric Marsh
%2 Feb 08

%method of steepest descent algorithm

%Description: This step-tracking simulation accomplishes spatial pull-in
%from the starting points defined in testvec.mat. The cost function is
%defined in 30nov.mat.
clear all
%close all
%load an antenna pattern *.mat file from genantennapattern.m
load 30nov.mat
load testvec.mat

soln=zeros(7,1000);
mainlobejump=zeros(1,1000);
bracketminfalse=zeros(1,1000);
gradfalloffcount=zeros(1,1000);

for mciter=1:1000
tic
xelpt=testvec(1,mciter); %initial guess
elpt=testvec(2,mciter); %initial guess

deljstep=.16; %(deg) this is ~3* the 3sigma on the 1-d pointing error
%distributions (also good for lin interp of ant pattern and machine errors)
deltax=[0;0];
x=[xelpt;elpt];
xnorm=0;
deltaxnorm=0;
iter=1;
epsilon=0.63; %looser?
gradient=[10^2;10^2];
hessian=zeros(2,2);
interp_method=’linear’;
R=zeros(2,2);
funcevals=0;
xelvar=.0004; %deg^2
elvar=.0004; %deg^2

194

ntsamps=10; %number of time samples to ensure normal distribution in xel
%and el
Fminjump=zeros(1,ntsamps);
gradswitch=epsilon*10;
linsearchparam=0.5;
linstepcount=0;
mincheck=0;
mincheckthreshold=4;
hessianhat=zeros(2,2);
directedgrad=0;
mincheckvec=0;
gradfalloff=0;
satvel=0.0005; %deg/sec
satvelx=sqrt(satvel^2/2);
satvely=satvelx;
samplewaittime=0.25; %sec
sattravelx=0;
sattravely=0;
xnormfromsat=0;
satpos=0;

% set terminate = false
terminate=false;
% while terminate = false
while terminate==false
% set compute alpha*pk = true
computedeltax=true;
%perform function/gradient evaluations at xk
%initializations
xnorm(iter)=norm(x(:,iter));
satpos(iter)=norm([sattravelx;sattravely]);
xnormfromsat(iter)=abs(xnorm(iter)-satpos(iter));
F=zeros(13,ntsamps);
g=zeros(2,5);
G=zeros(2,2);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%perform function evals:%%%%%%%%%%%%%%%%%%%%%%%
%F9,F10,F11 not needed
if Fminjump(1)==0

computeF1=true;
else

computeF1=false;
end
%%%F1%%%
if computeF1==true
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(1,i)=getsignalpower(xelpt+linnoisexel+sattravelx,elpt+linnoiseel+
sattravely,meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(1,1)=mean(F(1,:));
F(1,1)=roundn(F(1,1),-1); %round to nearest tenths
funcevals=funcevals+1;
else

195

F(1,1)=Fminjump(1);
end

%%%F2%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(2,i)=getsignalpower(xelpt+linnoisexel+deljstep+sattravelx,elpt+
linnoiseel+sattravely,meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(2,1)=mean(F(2,:));
F(2,1)=roundn(F(2,1),-1); %round to nearest tenths
funcevals=funcevals+1;

%%%F5%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(5,i)=getsignalpower(xelpt+linnoisexel+sattravelx,elpt+linnoiseel+
deljstep+sattravely,meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(5,1)=mean(F(5,:));
F(5,1)=roundn(F(5,1),-1); %round to nearest tenths
funcevals=funcevals+1;

if iter==1 || norm(gradient(:,iter-1)) < gradswitch
%%%F3%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(3,i)=getsignalpower(xelpt+linnoisexel+sattravelx,elpt+linnoiseel-
deljstep+sattravely,meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(3,1)=mean(F(3,:));
F(3,1)=roundn(F(3,1),-1); %round to nearest tenths
funcevals=funcevals+1;

%%%F4%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(4,i)=getsignalpower(xelpt+linnoisexel-deljstep+sattravelx,elpt+
linnoiseel+sattravely,meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(4,1)=mean(F(4,:));
F(4,1)=roundn(F(4,1),-1); %round to nearest tenths
funcevals=funcevals+1;
end
Fminjump=zeros(1,ntsamps);

196

%Form gradient vectors
%g3,g4 not needed
if iter==1 || norm(gradient(:,iter-1)) < gradswitch

g(:,1)=[(F(2,1)-F(4,1))/(2*deljstep);(F(5,1)-F(3,1))/(2*deljstep)];
gradient(:,iter)=g(:,1);

else
g(:,1)=[(F(2,1)-F(1,1))/(deljstep);(F(5,1)-F(1,1))/(deljstep)];
gradient(:,iter)=g(:,1);
fwddifcount(iter)=1;

end

%%%%%%%%%%%%%%%%%%%%%%%%check for local or global min:%%%%%%%%%%%%%%%%%%%%%
% if criteria for minimum = true (small gradient)
if norm(gradient(:,iter)) < epsilon

%in order to check for a local v. global min, need hessian matrix
%(more func evals):
%%%F6%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(6,i)=getsignalpower(xelpt+linnoisexel+deljstep+sattravelx,elpt+
linnoiseel+deljstep+sattravely,meshsize,xel,el,gridpow2,
interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(6,1)=mean(F(6,:));
F(6,1)=roundn(F(6,1),-1); %round to nearest tenths
funcevals=funcevals+1;

%%%F7%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(7,i)=getsignalpower(xelpt+linnoisexel+2*deljstep+sattravelx,elpt+
linnoiseel+sattravely,meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(7,1)=mean(F(7,:));
F(7,1)=roundn(F(7,1),-1); %round to nearest tenths
funcevals=funcevals+1;

%%%F13%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(13,i)=getsignalpower(xelpt+linnoisexel+sattravelx,elpt+linnoiseel+
2*deljstep+sattravely,meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(13,1)=mean(F(13,:));
F(13,1)=roundn(F(13,1),-1); %round to nearest tenths
funcevals=funcevals+1;

197

if iter==1 || norm(gradient(:,iter-1)) < gradswitch
%%%F8%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(8,i)=getsignalpower(xelpt+linnoisexel+deljstep+sattravelx,elpt+
linnoiseel-deljstep+sattravely,meshsize,xel,el,gridpow2,
interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(8,1)=mean(F(8,:));
F(8,1)=roundn(F(8,1),-1); %round to nearest tenths
funcevals=funcevals+1;

%%%F12%%%
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
F(12,i)=getsignalpower(xelpt+linnoisexel-deljstep+sattravelx,elpt+
linnoiseel+deljstep+sattravely,meshsize,xel,el,gridpow2,
interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
F(12,1)=mean(F(12,:));
F(12,1)=roundn(F(12,1),-1); %round to nearest tenths
funcevals=funcevals+1;
end
if iter==1 || norm(gradient(:,iter-1)) < gradswitch

g(:,2)=[(F(7,1)-F(1,1))/(2*deljstep);(F(6,1)-F(8,1))/(2*deljstep)];
g(:,5)=[(F(6,1)-F(12,1))/(2*deljstep);(F(13,1)-F(1,1))/(2*deljstep)];

else
g(:,2)=[(F(7,1)-F(2,1))/(deljstep);(F(6,1)-F(2,1))/(deljstep)];
g(:,5)=[(F(6,1)-F(5,1))/(deljstep);(F(13,1)-F(5,1))/(deljstep)];

end
%form hessian (G) matrix and check to see if you are on a local minimum
G(:,1)=(g(:,2)-g(:,1))/(deljstep);
G(:,2)=(g(:,5)-g(:,1))/(deljstep);
G=.5*(G+G’);
hessian(:,:,iter)=G;
%modified cholesky factorization of Hessian
L=eye(2);
D=zeros(2,2);
R=zeros(2,2);
delta=10; %effectively adds more or less damping to lin search
for j=1:2

if j==1
D(j,j)=G(j,j);
if D(j,j)<delta

R(j,j)=(delta-D(j,j));
D(j,j)=R(j,j)+D(j,j);

end
L(2,j)=G(2,j)/D(j,j);

elseif j==2
D(j,j)=G(j,j)-D(1,1)*(L(j,1))^2;
if D(j,j)<delta

198

R(j,j)=(delta-D(j,j));
D(j,j)=R(j,j)+D(j,j);

end
end

end
%%%%%%%%
hessianhat(:,:,iter)=L*D*L’;
%check for local min
if (norm(gradient(:,iter))<epsilon) && (R(1,1) > 0 || R(2,2) > 0) %if

%you’re at a weak min (grad small, hessian modified)
%TOL Much looser if rounding SNR values
V=zeros(2,2);
E=zeros(2,2);
deltaxminjump=zeros(2,1);
jumpxel=0;
jumpel=0;
[V,E]=eig(hessian(:,:,iter));
if V(:,1)’*hessian(:,:,iter)*V(:,1) > V(:,2)’*hessian(:,:,iter)

*V(:,2)
deltaxminjump=V(:,1);

else
deltaxminjump=V(:,2);

end
deltaxminjump=deltaxminjump*1.85; %1.85 comes from averaging
%distance between first 4 peaks on ant. pattern
jumpxel=x(1,iter)+deltaxminjump(1);
jumpel=x(2,iter)+deltaxminjump(2);
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
Fminjump(i)=getsignalpower(jumpxel+linnoisexel+sattravelx,jumpel
+linnoiseel+sattravely,meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
Fminjump(1)=mean(Fminjump(1,:));
Fminjump=roundn(Fminjump(1),-1); %round to nearest tenths
funcevals=funcevals+1;
if Fminjump(1) > F(1,1) %must check to see you are going in right

%direction on eigenvector
deltax(:,iter)=deltaxminjump*-1; %head the opposite way
Fminjump(1)=0;

else
deltax(:,iter)=deltaxminjump; %you jumped the correct way

end
mincheck=0;

else
deltax(:,iter)=[0;0];
mincheck=mincheck+1;

end
computedeltax=false;
if mincheck > mincheckthreshold

%computedeltax=true; %complete one more jump (already evaluated the
%function so might as well)
terminate=true;

end
elseif mincheck > 0 && norm(gradient(:,iter)) > epsilon

199

computedeltax=true;
mincheck=0;
gradfalloff(iter)=1;

end
mincheckvec(iter)=mincheck;

if computedeltax==true %%%%%%%%%%%if compute alpha*pk = true%%%%%%%%%%%%%%

%%%%%%%%%compute pk and initial alpha:%%%%%%%%%%%%%%%%%%%%%%
deltax(:,iter)=-gradient(:,iter);
alpha=1;
%limit alpha*pk to a predetermined region of confidence:
if norm(deltax(:,iter))>1.0 %if deltax is outside a "region of trust"

%chosen so if you’re at a max, won’t go over another max (max initial
%step routine will take)
deltax(:,iter)=(deltax(:,iter)/norm(deltax(:,iter)))*.75;

end

%evaluate function at initial alpha=1 value:
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
Falpha(i)=getsignalpower(x(1,iter)+deltax(1,iter)+linnoisexel+
sattravelx,x(2,iter)+deltax(2,iter)+linnoiseel+sattravely,meshsize,
xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
Falpha(1)=mean(Falpha(1,:));
Falpha=roundn(Falpha(1),-1); %round to nearest tenths
funcevals=funcevals+1;

%evaluate point along search direction to approximate gradient at alpha=1
dx1=deltax(1,iter)/norm(deltax(:,iter));
dx2=deltax(2,iter)/norm(deltax(:,iter));
nux=dx1*deljstep;
nuy=dx2*deljstep;
if norm([alpha*deltax(1,iter);alpha*deltax(2,iter)])>=deljstep

if alpha > 0
nu=norm([alpha*deltax(1,iter)-nux;alpha*deltax(2,iter)-nuy])/
norm(deltax(:,iter)); %ensure that nu value will be deljstep away
%from alpha in 1-d

else
nu=-1*norm([alpha*deltax(1,iter)+nux;alpha*deltax(2,iter)+nuy])/
norm(deltax(:,iter));

end
else

if alpha > 0
nu=-1*norm([alpha*deltax(1,iter)-nux;alpha*deltax(2,iter)-nuy])/
norm(deltax(:,iter)); %ensure that nu value will be deljstep away
%from alpha in 1-d

else
nu=norm([alpha*deltax(1,iter)+nux;alpha*deltax(2,iter)+nuy])/
norm(deltax(:,iter));

200

end
end
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
Fnu(i)=getsignalpower(x(1,iter)+nu*deltax(1,iter)+linnoisexel+
sattravelx,x(2,iter)+nu*deltax(2,iter)+linnoiseel+sattravely,
meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
Fnu(1)=mean(Fnu(1,:));
Fnu=roundn(Fnu(1),-1); %round to nearest tenths
funcevals=funcevals+1;

%%%%%%%%%%%%%%%%%%%%perform linear search along pk to determine satisfactory
alpha %%%%%%%%%%%%%%%%%%%%%%
linsearchconverge=false;
directedgrad(iter)=deltax(:,iter)’*gradient(:,iter);
%if alpha=1 is not satisfactory, perform lin search:
if abs((Falpha-Fnu))/deljstep > abs(-1*linsearchparam*directedgrad(iter))

%Criterion for lin search-(finite difference replaces gradient)-
%GMW p. 102

%Step 1- make sure you have an interval bracketing a minimum:
bracketmin=true;
if F(1,1)<Falpha %look opposite direction to find Fa and a values for

%interval containing minimum
alpha=-1;
bracket_step=1;
Fb=Falpha;
b=1;
Fc=F(1,1);
c=0;
Fa=-10^6;
a=alpha;

while Fa(1) <= Fc
if bracket_step > 1

Fb=Fc;
b=c;
Fc=Fa(1);
c=a;

end
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
Fa(i)=getsignalpower(x(1,iter)+alpha*deltax(1,iter)+
linnoisexel+sattravelx,x(2,iter)+alpha*deltax(2,iter)+
linnoiseel+sattravely,meshsize,xel,el,gridpow2,
interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
Fa(1)=mean(Fa(1,:));
Fa=roundn(Fa(1),-1); %round to nearest tenths
funcevals=funcevals+1;
a=alpha;

201

alpha=alpha*2;
bracket_step=bracket_step+1;

if bracket_step > 4
bracketmin=false;
bracketminfalse(1,mciter)=bracketminfalse(1,mciter)+1;
bracketminfalse(1+bracketminfalse(1,mciter),mciter)=iter;
warning(’could not bracket minimum for lin search in less than
4 steps’)
break

end
end

else %continue searching along search direction until a min is bracketed-
%(find b)

alpha=2;
bracket_step=1;
Fc=Falpha;
c=1;
Fa=F(1,1);
a=0;
Fb=-10^6;
b=alpha;

while Fb(1) <= Fc
if bracket_step > 1

Fa=Fc;
a=c;
Fc=Fb(1);
c=b;

end
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
Fb(i)=getsignalpower(x(1,iter)+alpha*deltax(1,iter)+
linnoisexel+sattravelx,x(2,iter)+alpha*deltax(2,iter)+
linnoiseel+sattravely,meshsize,xel,el,gridpow2,
interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
Fb(1)=mean(Fb(1,:));
Fb=roundn(Fb(1),-1); %round to nearest tenths
funcevals=funcevals+1;
b=alpha;
alpha=alpha*2-1;
bracket_step=bracket_step+1;

if bracket_step > 4
bracketmin=false;
bracketminfalse(1,mciter)=bracketminfalse(1,mciter)+1;
bracketminfalse(1+bracketminfalse(1,mciter),mciter)=iter;
warning(’could not bracket minimum for lin search in less
than 4 steps’)
break

end
end

end
%Step 2- perform quadradic interpolation:
if bracketmin==true %lin search...

linsearchconverge=true;
linstep=1;

202

while linstep==1 || abs((Falpha-Fnu))/deljstep > abs(-1*
linsearchparam*directedgrad(iter)) %criterion for linear
%search (finite difference replaces gradient)- GMW p. 102
if linstep > 1

if alpha < c && Falpha <= Fc
b=c;
c=alpha;
Fb=Fc;
Fc=Falpha;

elseif alpha > c && Falpha > Fc
b=alpha;
Fb=Falpha;

elseif alpha < c && Falpha > Fc
a=alpha;
Fa=Falpha;

else
a=c;
c=alpha;
Fa=Fc;
Fc=Falpha;

end
end
if Fa==Fb && Fb==Fc %can’t optimize any further with quad interp

break
end
if c-10000*eps<a&&a<c+10000*eps %saying if a==c

%can’t optimize any further with quad interp
break

end
if -10000*eps<((b-c)*Fa+(c-a)*Fb+(a-b)*Fc)&&((b-c)*Fa+(c-a)*Fb+

(a-b)*Fc)<10000*eps %saying if den of alpha calc == 0
%can’t optimize any further with quad interp
break

end
alpha=.5*((b^2-c^2)*Fa+(c^2-a^2)*Fb+(a^2-b^2)*Fc)/((b-c)*Fa+
(c-a)*Fb+(a-b)*Fc);
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
Falpha(i)=getsignalpower(x(1,iter)+alpha*deltax(1,iter)+
linnoisexel+sattravelx,x(2,iter)+alpha*deltax(2,iter)+
linnoiseel+sattravely,meshsize,xel,el,gridpow2,
interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
Falpha(1)=mean(Falpha(1,:));
Falpha=roundn(Falpha(1),-1); %round to nearest tenths
funcevals=funcevals+1;
if norm([alpha*deltax(1,iter);alpha*deltax(2,iter)])>=deljstep

if alpha > 0
nu=norm([alpha*deltax(1,iter)-nux;alpha*deltax(2,iter)-

nuy])/norm(deltax(:,iter)); %ensure that nu value
%will be deljstep away from alpha in 1-d

else
nu=-1*norm([alpha*deltax(1,iter)+nux;alpha*deltax(2,iter)+

nuy])/norm(deltax(:,iter));
end

203

else
if alpha > 0

nu=-1*norm([alpha*deltax(1,iter)-nux;alpha*deltax(2,iter)
-nuy])/norm(deltax(:,iter)); %ensure that nu value

%will be deljstep away from alpha in 1-d
else

nu=norm([alpha*deltax(1,iter)+nux;alpha*deltax(2,iter)+
nuy])/norm(deltax(:,iter));

end
end
for i=1:ntsamps

linnoisexel=randn(1,1)*sqrt(xelvar);
linnoiseel=randn(1,1)*sqrt(elvar);
Fnu(i)=getsignalpower(x(1,iter)+nu*deltax(1,iter)+linnoisexel
+sattravelx,x(2,iter)+nu*deltax(2,iter)+linnoiseel+sattravely,
meshsize,xel,el,gridpow2,interp_method);
sattravelx=sattravelx+satvelx*samplewaittime;
sattravely=sattravely+satvely*samplewaittime;

end
Fnu(1)=mean(Fnu(1,:));
Fnu=roundn(Fnu(1),-1); %round to nearest tenths
funcevals=funcevals+1;
linstep=linstep+1;
if linstep > 20

linsearchconverge=false;
break

end
end
linstepcount(iter)=linstep;

end
end
if linsearchconverge==true %if lin search produced a good alpha within max

%number of linsteps
deltax(:,iter)=deltax(:,iter)*alpha;

end %else, alpha remains at one
end
deltaxnorm(iter)=norm(deltax(:,iter));
x(:,iter+1)=x(:,iter)+deltax(:,iter);
xelpt=x(1,iter+1);
elpt=x(2,iter+1);

%jump off main lobe??
if xnormfromsat(iter) < .25 && deltaxnorm(iter) > 1.8
mainlobejump(mciter)=mainlobejump(mciter)+1;

end
%%%%%%%%%

iter=iter+1;
if funcevals > 500

warning(’max number of function evaluations reached’)
break

end
end

gradfalloffcount(mciter)=sum(gradfalloff);
%calculate approximate time
if satvel > eps*10000 %if satvel isn’t zero

204

time=satpos(end)/satvel;
else

time=0;
end
soln(1:2,mciter)=[x(1,end);x(2,end)];
soln(3,mciter)=iter;
simtime=toc;
soln(4,mciter)=simtime;
soln(5,mciter)=funcevals;
soln(6,mciter)=xnorm(end);
soln(7,mciter)=satpos(end);
soln(8,mciter)=xnormfromsat(end);
soln(9,mciter)=time;
soln(10,mciter)=sum(linstepcount);
soln(11,mciter)=mainlobejump(mciter);
soln(12,mciter)=gradfalloffcount(mciter);
end

C.6 getsignalpower.m (Subroutine)

function [power]=getsignalpower(azpt,elpt,meshsize,az,el,powergrid,\
interp_method)
%Eric Marsh
%3 Dec 07
%interpolates signal power value from given xel,el coordinate
if mod(azpt,meshsize)==0 && mod(elpt,meshsize)==0 %is point is on mesh

%grid (saves time rather than interpolating) change to <epsilon
%rather than zero for being very close to mesh
[r,c,v]=find(az<azpt+1000*eps & az>azpt-1000*eps); %accounts for
%machine precision. like saying: [r,c,v]=find(az==azpt);
[r1,c1,v1]=find(el<elpt+1000*eps & el>elpt-1000*eps);
power=powergrid(c(1),r1(1));

else
power=interp2(az,el,powergrid,azpt,elpt,interp_method);

end

205

206

Appendix D

List of Acronyms and Symbols

Table D.1: List of Acronyms and Abbreviations Used in

This Work

Abbreviation Description

A/C Aircraft

APS Antenna Positioner System

Az Azimuth

BER Bit Error Rates

BFGS Broyden, Fletcher, Goldfarb, and Shano Method of Optimization

CMC Cleveland Motion Controls

COE Classical Orbital Elements

DFP Davidon, Fletcher, and Powell Method of Optimization

dB Decibels

ECI Earth-Centered Inertial

EHF Extremely High Frequency

EOM Equations of Motion

El Elevation

GPS Global Positioning System

HPBW Half-Power Beamwidth

IMU Inertial Measurement Unit

207

ISP Inertially Stabilized Platform

LHP Left Half-Plane

LHS Left Hand Side

LOS Line Of Sight

LQG Linear Quadratic Gaussian

LQR Linear Quadratic Regulator

MN Modified Newton’s Method of Optimization

NED North, East, Down

PSD Power Spectral Density

RF Radio Frequency

RHS Right Hand Side

RX Receive

SATCOM Satellite Communications

SD Steepest Descent Method of Optimization

SNR Signal to Noise Ratio

SS Spiral Search Method of Optimization

TX Transmit

X-El Cross-Elevation

Table D.2: List of Symbols Used in This Work

Symbol Description

A System Plant State Coefficient Matrix

Afilt Filter State Equation A Matrix

az Local Azimuth Angle (◦)

az10Hz Azimuth Look Angle Calculated at 10Hz Intervals (◦)

azNED Inertial Azimuth Look Angle (NED Frame) (◦)

azd Desired Local Azimuth Look Angle (◦)

Bfilt Filter State Equation B Matrix

208

Bk Quasi-Newton Approximate to the Hessian Matrix at the k-th Trial Point

Bu System Plant Control Coefficient Matrix

Bw System Plant Disturbance Input Coefficient Matrix

Cy System Plant Output Coefficient Matrix

DP Disturbance Rate Input about Body x Axis (
◦

sec
)

DQ Disturbance Rate Input about Body y Axis (
◦

sec
)

DR Disturbance Rate Input about Body z Axis (
◦

sec
)

Dk Diagonal Cholesky Factorization Matrix

dmax Max Distance From Boresight (◦)

dmean Mean Distance From Boresight (◦)

dσ Standard Deviation of Distance From Boresight (◦)

ea Applied Armature Source Voltage (V)

eb Back-EMF Voltage (V)

el Local Elevation Angle (◦)

el10Hz Elevation Look Angle Calculated at 10Hz Intervals (◦)

elNED Inertial Elevation Look Angle (NED Frame) (◦)

eld Desired Local Elevation Look Angle (◦)

eli Inertial Elevation Look Angle (◦)

FT Total Number of Cost Function Evaluations

Fk Cost Function Value at the k-th Trial Point

Gk Hessian Matrix at the k-th Trial Point

gk Gradient at the k-th Trial Point

H0 Null Hypothesis

Ha Alternate Hypothesis

I Moment or Product of Inertia (m2kg)

ia Armature Current (A)

Kb Back-EMF Constant (V
◦
sec

)

Km Motor Constant (N-m
A

)

Ko Optimal Regulator Gain Matrix

209

La Armature Circuit Inductance (H)

Lk Lower-Triangular Cholesky Factorization Matrix

Lo Optimal Estimator Gain Matrix

N̄ Reference Input Gain

n Number of Cost Function Evaluations per Trial Point

nCI n Determined by the Confidence Interval Formula

ng Gear Ratio

nnc Number of Nonconverging Points

P Antenna Inertial Velocity about Body x Axis (
◦

sec
)

PA/C Aircraft Rotational Motion about Aircraft x Axis (
◦

sec
)

P ′A/CBase Aircraft Rotational Motion about Base x Axis (
◦

sec
)

p Antenna Inertial Displacement about Body x Axis (◦)

pk Descent Direction at the k-th Trial Point

Q Antenna Inertial Velocity about Body y Axis (
◦

sec
)

QA/C Aircraft Rotational Motion about Aircraft y Axis (
◦

sec
)

Q′A/CBase Aircraft Rotational Motion about Base y Axis (
◦

sec
)

Qk Quasi-Newton Update Matrix at the k-th Trial Point

q Antenna Inertial Displacement about Body y Axis (◦)

R Antenna Inertial Velocity about Body z Axis (
◦

sec
)

RA/C Aircraft Rotational Motion about Aircraft z Axis (
◦

sec
)

R′A/CBase Aircraft Rotational Motion about Base z Axis (
◦

sec
)

Ra Armature Circuit Resistance (Ω)

Ruu Control Weighting Matrix

Rvv Sensor Noise Weighting Matrix

Rww Process Noise Weighting Matrix

Rxx State Weighting Matrix

r Antenna Inertial Displacement about Body z Axis (◦)

r1 Motor Shaft Gear Radius (m)

r2 Az/El Output Shaft Gear Radius (m)

210

S Standard Deviation

T Torque (N-m)

tc Convergence Time

v Sensor Noise

vpat Cost Function Translational Velocity

vj j-th Eigenvector of Hessian Matrix

w Process Noise

wCI Confidence Interval Width

x∗ Location of Global Minimum

xk xeli, eli Coordinates of the k-th Trial Point

xeli Inertial Cross-Elevation Look Angle (◦)

zα
2

z-Critical value for Confidence Interval

α Step Length

αKS Kolmogorov-Smirnoff Significance Level

∆ Total Inertial Pointing Error (◦)

δG Positive Definiteness Requirement in Cholesky Factorization

δf Finite Difference Interval

η Linear Search Parameter

ν Linear Search Criterion Step Length

θ̇1 Motor Shaft Velocity (
◦

sec
)

θ̇2 Az/El Output Shaft Velocity (
◦

sec
)

θ̇roll Antenna Velocity wrt the Aircraft about Body x Axis (
◦

sec
)

θ̇pitch Antenna Velocity wrt the Aircraft about Body y Axis (
◦

sec
)

θ̇yaw Antenna Velocity wrt the Aircraft about Body z Axis (
◦

sec
)

ρ Convergence Percentage (%)

Ψ Aircraft Heading Angle (◦)

Θ Aircraft Pitch Angle (◦)

Φ Aircraft Roll Angle (◦)

211

212

Bibliography

[1] Masten, M. K., “Platforms for Optical Imaging Systems,” IEEE Control Systems

Magazine, February 2008.

[2] Stockum, L. A. and Carroll, G. R., “Precision Stabilized Platforms for Shipboard

Electro-optical Systems,” SPIE , June 1984.

[3] Wang, H. G. and Williams, T. C., “Strategic Inertial Navigation Systems,” IEEE

Control Systems Magazine, February 2008.

[4] Hilkert, J. M., “Inertially Stabilized Platform Technology,” IEEE Control Sys-

tems Magazine, February 2008.

[5] Hwang, W. G., “Bandwidth on Demand for Deployed-IP Users,” IT Professional ,

Vol. 7, No. 1, January 2005.

[6] Hampton, P., “Naval Space Command’s top functional requirements for commer-

cial SATCOM,” Military Communications Conference Proceedings, 1999. MIL-

COM 1999. IEEE , Vol. 32, November 1999.

[7] Nicol, S., Walton, G., Westbrook, L., and Wynn, D., “Future Satellite Com-

munications to Military Aircraft,” Electronics and Communication Engineering

Journal , Vol. 12, February 2000.

[8] Barnes, M., “Use of Commercial Satcom in the Skynet 5 Era,” IEE Colloquium

on Military Satellite Communications , March 1995.

[9] Debruin, J., “Control Systems for Mobile SATCOM Antennas,” IEEE Control

Systems Magazine, February 2008.

213

[10] Stutzman, W. L. and Thiele, G. A., Antenna Theory Design, John Wiley and

Sons, 2nd ed., 1998.

[11] Johnson, M., “ARION Antenna Control and Stabilization System,” Broadcasting

and Communication, Vol. 20, 1984.

[12] Barbour, N. and Schmidt, G., “Inertial Sensor Technology Trends,” IEEE Sen-

sors Journal , Vol. 1, No. 4, December 2001.

[13] James, M. R. and Maney, J. J., “Adaptive Alignment of a Shipboard Satellite

Terminal,” IEEE Military Communications Conference, IEEE Communications

Society, 1985.

[14] Fisk, J. W., “Confidence Limits for the Pointing Error of Gimbaled Sensors,”

IEEE Transactions on Aerospace and Electronic Systems , Vol. AES-2, No. 6,

November 1966.

[15] Figucia, R. J., “Downlink Acquisition and Tracking Procedures for the ASCAMP

Satellite Communications Terminal,” Tech. rep., Massachusetts Institute of Tech-

nology Lincoln Laboratory, September 1993.

[16] Claydon, B., “Earth Station Antenna Technology,” Vacation School on Satellite

Communication System Planning , IEEE, London, UK, September 1984.

[17] Plonski, M., “Auxiliary Antenna Approach to Sidelobe Discrimination for Max-

imum Dynamic Range,” SPIE , Vol. 1700, April 1992.

[18] Reinhard, K. L. and Darlington, J. C., “Satellite Acquisition Using an Auto-

mated Technique,” Tech. rep., Ford Aerospace and Communications Corpora-

tion, 1974.

[19] Gawronski, W. and Craparo, E. M., “Antenna Scanning Techniques for Esti-

mation of Spacecraft Position,” IEEE Antenna’s and Propagation Magazine,

Vol. 44, No. 6, December 2002.

214

[20] Torquemaster Brush Servo-Motors 2100 Series , Cleveland Motion Controls,

2002, www.cmccontrols.com/downloads/servo motors/platform2100.pdf.

[21] KVH DSP-3000 Fiber Optic Gyro Technical Manual , KVH Industries, Inc, 2007.

[22] C-MIGITS III Data Sheet , BEI Systron Donner Inertial Division, 2006.

[23] Ogata, K., System Dynamics , Pearson Prentice Hall, 4th ed., 2004.

[24] Yechout, T. R., Introduction to Aircraft Flight Mechanics , AIAA, 2003.

[25] Stearns, S. D. and Hush, D. R., Digital Signal Analysis , Prentice Hall, 1990.

[26] How, J. P., Lecture Notes for 16.323: Principles of Optimal Control , Mas-

sachusetts Institute of Technology, 2007.

[27] Athans, M., “The Role and Use of the Stochastic Linear-Quadratic-Gaussian

Problem in Control System Design,” SPIE Milestone Series , Vol. AC-16(6), De-

cember 1971, pp. 529–552.

[28] Bryson, A. E. and Yu-Chi-Ho, Applied Optimal Control , Hemisphere Publishing

Corporation, 1975.

[29] Brown, R. G. and Hwang, P. Y., Introduction to Random Signals and Applied

Kalman Filtering , John Wiley and Sons, 1983.

[30] Stengel, R. F., Stochastic Optimal Control , John Wiley and Sons, 1986.

[31] How, J. P., Lecture Notes for 16.31: Feedback Control , Massachusetts Institute

of Technology, 2001.

[32] Lancaster, H. O., “Zero Correlation and Independence,” Australian and New

Zealand Journal of Statistics , Vol. 1, No. 2, August 1959.

[33] Stephens, M., “EDF Statistics for Goodness of Fit and Some Comparisons,”

American Statistical Association, Vol. 69, No. 347, September 1974.

[34] Scales, L., Introduction to Non-Linear Optimization, Springer-Verlag, 1985.

215

[35] Gill, P. E., Murray, W., and Wright, M. H., Practical Optimization, Academic

Press, 1981.

[36] Nocedal, J. and Wright, S. J., Numerical Optimization, Springer, 2006.

[37] Devore, J. L., Probability and Statistics , Thomson, 6th ed., 2004.

[38] Chobotov, V. A., Orbital Mechanics , AIAA, 3rd ed., 2002.

[39] Sellers, J. J., Understanding Space, McGraw-Hill, 2nd ed., 2000.

[40] Montenbruck, O. and Gill, E., Satellite Orbits , Springer, 2000.

216

